
WindowsResearch

Implementation of a Translator for Windows Machines

within the Project VeriNeC

Master Thesis in Informatics

University of Fribourg, Switzerland

Author:
Nadine Zurkinden

Waldweg 6
3186 Düdingen

nadine.zurkinden@unifr.ch

Supervisor: Assistants:
Prof. Dr. Ulrich Ultes-Nitsche David Buchmann
telecommunications, networks & security Dominik Jungo
Research Group
Department of Computer Science

September, 2005

Abstract

This paper shows how Windows machines can be remotely configured using a Java API. It is

part of the project Verinec. Verinec aims to simplify network configuration. The idea is to

describe the abstract definition of a network using the XML syntax. This abstract configuration

will be translated automatically into machine specific configuration using XSLT. Then it will

be distributed to the target system using the Windows Management Instrumentation (WMI).

Through WMI, Windows resources can be managed locally or remotely over a network using

scripts. The Java API used to access the WMI is Jawin.

The configuration of the Ethernet card and dial-up modem was studied in detail. It was also

researched, how the user account management is handled in Windows.

Keywords: Network Configuration, Windows Management Instrumentation, Jawin

Contents

Contents 1

List of Figures 3

1 Introduction 4

1.1 Objectives . 4

1.2 Overview . 5

2 VeriNeC 6

2.1 Architecture of VeriNeC . 6

2.2 Distribution . 7

3 Research 8

3.1 Registry . 8

3.1.1 Java API for Registry . 9

3.2 XML . 11

3.3 WMI . 12

3.3.1 Java API for WMI . 12

3.4 Conclusion . 13

4 Windows Management Instrumentation 14

4.1 WMI Architecture . 15

4.1.1 Managed Resources . 15

4.1.2 WMI Infrastructure . 16

4.1.3 Consumers . 17

4.2 Common Information Model . 18

4.2.1 Namespaces . 19

4.2.2 Class Categories . 19

4.2.3 Class Types . 20

4.2.4 Class Structure . 21

4.3 Scripting API for WMI . 23

4.3.1 WMI Scripting Library Object Model . 23

4.4 WMI Query Language . 25

1

CONTENTS 2

4.5 Network Configuration using WMI . 26

4.5.1 Ethernet . 26

4.5.2 Dial-Up Modem . 27

4.6 User Account Management . 28

4.6.1 User Account Management in WMI . 29

5 Jawin 30

5.1 Getting Started with Jawin . 30

5.2 WMI Scripts in Jawin . 31

6 Windows Translator in Detail 33

6.1 Translation Process . 34

6.1.1 XSL Repository . 34

6.1.2 Restriction . 35

6.1.3 Translation . 35

6.1.4 Distribution . 36

7 Conclusion 38

7.1 Criticism of the Windows Management Instrumentation 38

7.2 Criticism of the Project . 38

Bibliography 39

A Acronyms 41

B Result-WMI Schema 43

C Directory Organization on the CD 46

List of Figures

2.1 Architecture of Verinec [1] . 6

3.1 Structure of the Windows Registry [3] . 8

3.2 Classes of jRegistry Key [4] . 9

3.3 Changing the Computer Name using jRegistry Key 10

3.4 Classes of JNIRegistry [5] . 10

4.1 WMI Architecture [12] . 15

4.2 Structure of the CIM Repository [12] . 18

4.3 Structure of a Managed Resource Class Definition [12] 21

4.4 WMI Scripting Library Object Model, wbemdisp.dll [12] 24

5.1 Assign a Static IP Address to a Network Adapter using Jawin 31

6.1 An Example of a Simple Node . 33

6.2 The Translation Process in detail [1] . 34

6.3 An Example of a Node Type Definition . 35

6.4 Configuration Output for an Ethernet Card in Windows XP 35

6.5 Target for Local or Remote Connections . 36

6.6 Target for Remote Connections . 36

3

Chapter 1

Introduction

Configuring a network of computers is more and more complex as environments become

heterogeneous. Also the number of supported services needed to be configured increases.

The project Verified Network Configuration (VeriNeC), founded by the Swiss National

Science Foundation, shall simplify network configuration. Therefore computers are configured

automatically. Another aim of Verinec is to help configuring secure networks. For this purpose

a simulator checks whether the network fulfills the desired behaviour. If the simulated network

behaves as desired, the configuration data can be distributed to the target computer.

The automatic configuration of Linux machines is quite simple as the configuration is based

on files. So the text files with the configuration data can simply be stored to the appropriate

directory in the file system. The configuration of Windows machines on the contrary is mostly

based on a registry. Therefore another solution to configure network services must be found.

1.1 Objectives

The aim of this thesis is that Windows machines can be configured automatically through

Verinec. To achieve this, the project Verinec must be understood, particularly the translation

process. Then a research is made on how Windows can be configured remotely using a Java

Application Programming Interface (API). Based on that research, the Windows translator

will be implemented. Therefore translation files will be created using the eXtensible Stylesheet

Language Transformations (XSLT). Then the distributor will be implemented. It should be

universal for all services configurable through WMI, also for those not yet supported but which

follow.

The research is made globally and the configuration of the Ethernet card will be implemented.

There is also a research on how the user account management is handled in Windows, but this

will not be implemented.

4

CHAPTER 1. INTRODUCTION 5

1.2 Overview

After this introduction, the paper starts with a short summary of the Verinec project. The

architecture of Verinec is shown and the function of the translator is explained briefly.

The third chapter covers the research procedure: How Windows machines can be configured

automatically using a Java API. Three approaches with corresponding Java API’s are presented.

A short overview of the chosen alternative concludes that chapter.

In the fourth chapter, the Windows Management Instrumentation (WMI) is exposed in detail.

The WMI architecture is explained on the basis of managed resources, WMI infrastructure and

consumers. As the Common Information Model (CIM) is very important in order to work with

WMI, it is explained in an own section. Then the functionality of the scripting API for WMI

is illustrated. Furthermore it will be shown, how an Ethernet card can be configured through

WMI. To finish this chapter, an outlook how the user account management can be handled in

Windows using WMI is presented.

The fifth chapter is about Jawin. It shows which preconditions must be considered before one

can work with Jawin. There is also an example explained in detail.

In the sixth chapter the translation process of the Windows Translator is described in detail.

The last chapter contains the conclusions of the project.

Chapter 2

VeriNeC

Configuring a network can be very difficult, as there may be different environments in a network.

The main idea of the project Verinec is to simplify the process of network configuration.

The basic idea of Verinec is to describe the abstract configuration data using an eXtensible

Markup Language (XML) syntax. The abstract configuration is automatically translated into

machine specific configuration and distributed to the specified system. Prior to really configure

the network, the simulator allows testing whether the configuration fulfills the desired behaviour.

2.1 Architecture of VeriNeC

The architecture of Verinec is made up of several modules. Figure 2.1 shows the different

Modules of the Verinec system.

Network
Definition

Configuration
Data

Verification

Editor

Import

Description
System

Port Scan
Traffic Analysis

Distribution

Rules

Design Guidelines

Simulation

Feedback

Restriction analysis

XSL
Translator

File, SNMP, ...

Figure 2.1: Architecture of Verinec [1]

6

CHAPTER 2. VERINEC 7

• The Network Definition is the base of Verinec and contains all configuration details

stored in XML structure.

• The Verification module is testing whether a network fulfills specified requirements.

A Simulation module aims to build a virtual network and simulate the network

behaviour.

• The Editor is a Graphical User Interface (GUI), which displays a network and helps to

generate the network configurations.

• The Distribution module translates abstract configuration into system specific

configurations and distributes these to the specified system.

• The Import module analyzes networks and configuration files to simplify the introduction

of the Verinec system in existing environments.

• The System Description module is a graphical application that controls the different

modules.

2.2 Distribution

The translation module generates configuration files from the abstract XML data. The

translation is done in two steps.

First, the abstract configuration data is translated into concrete configuration, which is applicable

for the distributor. Using metadata in the configuration document the translator selects the

correct translation XSLT and distributor, which is a Java class, for each service. Because

of unsupported features in some systems, the translator has a restriction module which can

produce warnings to the user. These restrictors extract warnings for configurations that can not

be fulfilled for the selected architecture.

The second step of distribution consists of pre- and post processing (i.e. stopping and starting

services) and the application of the configurations. The distributor is implemented in Java and

puts the appropriate configuration data on the target system.

For more information about Verinec see [1] and [2]. The translator will be explained more

detailed in Chapter 6.

Chapter 3

Research

The configuration of Windows machines is mostly based on the registry. Part of this research

thesis was to evaluate the different means in which Windows can be remotely configured using

a Java API. There are three approaches illustrated below.

3.1 Registry

One obvious possibility is to modify the registry directly. The registry is the basis for the whole

configuration in Windows (since Windows 95). It is a hierarchically structured database where

all configuration data of the operating system, installed applications and hardware devices is

stored.

The hierarchy is the basis for the organization of the registry. The registry is composed of

thousands of keys. Every key can have one or more entries as well as child keys. Each entry

consists of a name, a data type and a value. The hierarchical structure of the registry is very

similar to the file system of the explorer. Figure 3.1 shows how the registry is structured.

Figure 3.1: Structure of the Windows Registry [3]

8

CHAPTER 3. RESEARCH 9

In Windows XP the hierarchical structure of the registry begins with five keys which just act as

logical classification and contain no entries. These are:

• HKEY CLASSES ROOT: In this key all information of Component Object Model

(COM) objects, file extensions and file type is stored. It is the alias of HKEY LOCAL

MACHINE/Software/Classes.

• HKEY CURRENT USER: All software settings of the user currently logged on the

machine are achieved here, including desktop settings, logon name and start menu settings.

• HKEY LOCAL MACHINE: This is the most important key. Here is the configuration

data of Windows, the applications and the hardware stored.

• HKEY USERS: The individual preferences of all registered users are saved here. The

keys of the actual user are loaded to HKEY CURRENT USER.

• HKEY CURRENT CONFIG: This key contains the data of the actual hardware

configuration. It corresponds to the key HKEY LOCAL MACHINE/System/Current

ControlSet/HardwareProfiles.

For more details about the Windows registry see [3].

3.1.1 Java API for Registry

Two alternatives were studied about how one can access the Windows registry using Java.

Probably there exist other.

jRegistry Key

The first one is the jRegistry Key Java Native Interface (JNI) API [4]. It was designed by BEQ

Technologies Inc. to facilitate Windows registry access for Java developers. They have decided

to release jRegistry Key as an open-source product under the LGPL. A few classes are provided

to manipulate the Windows registry. These classes are listed in Figure 3.2.

Figure 3.2: Classes of jRegistry Key [4]

CHAPTER 3. RESEARCH 10

An example how the computer name can be changed with jRegistry Key is shown in Figure 3.3.

Example with jRegistry Key

import ca.beq.util.win32.registry.*;

public class jRegistryKey {

public static void main(String[] args) {

//the path of the key you will access

RegistryKey r = new RegistryKey(RootKey.HKEY_LOCAL_MACHINE,

"System\\CurrentControlSet\\Control\\ComputerName\\ComputerName");

//ComputerName will be changed to myPC

RegistryValue v = new RegistryValue("ComputerName", ValueType.REG_SZ, "myPC");

r.setValue(v);

}

}

Figure 3.3: Changing the Computer Name using jRegistry Key

The example consists of two parts. First, the key which we want to access is specified.

Therefore a new RegistryKey r with the path of the key will be created. The entry for

the computer name is stored under HKEY LOCAL MACHINE/System/CurrentControl

Set/Control/ComputerName/ComputerName. Then a new RegistryValue v will be

created with the new parameters name, data type and value. In this example only the value is

changed. Finally the new value will be assigned to the key with r.setValue(v).

JNIRegistry

Another possibility is JNIRegistry [5]. It was developed by ICE Engineering Inc. to access,

modify and export Windows registry resources with Java. The com.ice.jni.registry package

has been placed into the public domain. Thus, absolutely no licensing issues have to be

considered. Figure 3.4 shows the classes defined for registry access.

Figure 3.4: Classes of JNIRegistry [5]

CHAPTER 3. RESEARCH 11

The Java code for changing the computer name is very similar to the example of the jRegistryKey.

Therefore it was not included here.

It is always a little dangerous to manipulate the registry directly. If a wrong key has been

changed or deleted, the whole computer might get stuck. To avoid this, it is recommended to

back up the registry before making any changes. So if the worst comes to the worst, the old

state of the registry can be restored.

Another disadvantage is, that there is no standard which keys have to be modified. Also, there

is no way to access the registry remotely. This would have to be implemented. Thus we will

look at some other solutions before we decide.

3.2 XML

An easier solution would be to write an XML file with the concrete configurations and to store

this to an appropriate directory, such as the text files in Linux. The only possibility seemed to

be the .NET Framework as this supports a lot of XML and also has an XML parser.

The .NET Framework is an environment in Windows for the development, supply and design of

XML Web services and other applications. It is focused on platform independence and network

transparency. The .NET Framework is composed from a set of programming languages (C#,

VB .NET...) that are completely object oriented. It has cross-language compatibility, meaning

that .NET components can interact with each other regardless of the language in which they

where written. For more detail about the .NET Framework see [7] and [6].

After a long research on the Microsoft homepage and [7] there was no solution found, how one

can configure a Windows machine directly using XML. There exist configuration files which are

text files using the XML syntax in the .NET Framework. On the first sight they seem perfect

as there exist also machine configuration files. But they are not designated for configuring

Windows resources. They are rather to configure the .NET Framework itself. This means

configuring global settings for ASP.NET, remoting and global assembly cache. So the research

has to be continued.

CHAPTER 3. RESEARCH 12

3.3 WMI

Having no solution to configure Windows machines using XML, I came upon the Windows

Management Instrumentation (WMI). WMI is a component of the Windows operating system

through which Windows resources can be accessed, configured and managed.

WMI is preinstalled in Windows 2003, Windows XP, Windows ME and Windows 2000. For

Windows NT and Windows 98/95 WMI can be downloaded from [8] (WMI CORE 1.5 (Windows

95/98/NT 4.0)).

In Chapter 4, WMI will be treated in detail. We will now discuss the available Java API’s for

WMI.

3.3.1 Java API for WMI

WBEM Services

The WMI can also be accessed using Java. WBEM Services [9] seem to be a potential API.

WBEM Services are an open source Java implementation of Web-Based Enterprise Management

(WBEM) (see Chapter 4), developed by Sun Microsystems Inc. The source code is available

under the Sun Industry Standards Source License (SISSL).

Several classes are provided to handle the Common Information Model (CIM) (see 4.2). After

having tested WBEM Services, result was that one can not access any Win32 classes. The reason

is that the implementation of WBEM Services does not include the necessary adapters to interact

with WMI. WMI uses the Distributed Component Object Model (DCOM) to

communicate with the Common Information Model Object Manager (CIMOM). In contrast the

WBEM Services project uses HTTP. Thus WBEM Services can be used to connect to servers

running WMI, but one can not get any information from WMI.

Jawin

Another Java API to access the WMI is Jawin [10]. The Java/Win32 integration project

(Jawin) is a free, open source architecture for interoperation between Java and components

exposed through Microsoft’s Component Object Model (COM) or through Win32 Dynamic Link

Libraries (DLLs). Jawin can be used to call any component that can be scripted in the Microsoft

environment without writing any JNI code.

The fact that one can manipulate any information made available through WMI using scripts

makes this approach interesting. An example of how to use Jawin is shown in Section 5.2,

Figure 5.1.

CHAPTER 3. RESEARCH 13

3.4 Conclusion

We have two alternatives to configure a Windows machine remotely using Java. The first one is

to write a server to manipulate the keys of the registry. The second one is to configure Windows

with the Windows Management Instrumentation. The better solution is to configure the network

settings using WMI.

In WMI we have just to know the classes that are responsible for the resource we want to

manage. To access WMI, the structure of the example in Figure 5.1 can always be used. Only

the WMI class we will access, the method we will execute and the input parameters need to be

changed. This can be defined using XML.

We will access the WMI using Jawin. The disadvantage of Jawin is that it only runs on Windows

machines. So the WMI can not be manipulated from a Linux machine. But it is still better

and easier to configure Windows using Jawin than to do it through the registry, as we do not

have to know where all the keys are stored. Furthermore it is very easy to configure Windows

remotely. We can just write the hostname of the computer we want to access.

Chapter 4

Windows Management
Instrumentation

The Windows Management Instrumentation (WMI) has been the central management technology

since Windows 2000. It is a component of the Windows operating system through which

Windows resources can be accessed, configured, managed and monitored using scripts. Through

WMI, computers can be managed locally or remotely over a network. WMI uses the Distributed

Component Object Model (DCOM) to handle remote calls.

WMI is the Microsoft implementation of the Web-Based Enterprise Management. WBEM is

a standard of the Desktop Management Task Force (DMTF) to manage network and system

resources across a network. WBEM is defined independently of protocol or management

standards.

The core of WBEM is the Common Information Model (CIM), which shapes the managed

resources of WBEM through object-oriented methods. CIM is a framework which describes both

physical and logical objects. CIM is designed to complement existing management standards like

the Simple Network Management Protocol (SNMP) or the Common Management Information

Protocol (CMIP). WBEM provides an integration point through which data from all such sources

can be accessed.

WBEM is an object-oriented approach. Every resource is represented by objects, which are

combined in classes. The representation of a resource in WBEM is called a managed object.

The name Web-Based Enterprise Management is misleading, as it suggests that WBEM is

about a web-based graphical user interface for the management of system information. However

WBEM is simply an architecture with a programming interface, therefore neither tool nor

application. Why it is called web-based keeps a mystery of the developers.

For more details about WMI and WBEM see [14].

14

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 15

4.1 WMI Architecture

The complicated part of working with WMI is not writing code, but to find out which classes

are available to access the required resources. Understanding the WMI architecture is essential

to know what classes WMI can manage as well as which methods and properties may be used

with each class. According to [12], the WMI architecture consists of three main layers as shown

in Figure 4.1. These will be explained in the subsections.

• Managed Resources

• WMI Infrastructure

• Consumers

Figure 4.1: WMI Architecture [12]

4.1.1 Managed Resources

We will begin at the lowest layer as this is where resources are located. A managed resource is

an arbitrary logical or physical component which is made available and manageable through

WMI. Windows resources that can be managed using WMI include the computer system,

disks, event logs, file systems, network components, printers, processes, security (authentication/

authorization) and many more.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 16

4.1.2 WMI Infrastructure

The middle layer is the WMI infrastructure. WMI consists of three main components, which

are the Common Information Model Object Manager (CIMOM), the CIM repository and WMI

providers. Together these three WMI components build the infrastructure through which

configuration and managed data is defined, exposed, retrieved and accessed. The fourth

component, small but necessary, is the WMI scripting library.

WMI Providers

The providers are one of the main components of the WMI architecture. They facilitate the

communication between WMI and a managed resource. Providers request information from

and send instructions to WMI managed resources. WMI providers communicate with their

appropriate managed resources using the managed resources native API’s, and communicate

with the CIMOM using WMI programming interfaces.

Software developers have the possibility to develop and integrate add-on providers, to make the

management functions available uniquely to their products.

CIMOM

The Common Information Model Object Manager allows the interaction between consumer and

provider. All requests from the WMI pass through the CIMOM. In Windows XP and Windows

Server 2003 the WMI service, winmgmt.exe, adopts the role of the CIMOM.

Beside the common interface through which consumers access WMI, the CIMOM provides core

services as the provider registration, request routing, remote access, security (authorization),

query processing and event processing.

Applications call into the CIMOM to perform management-related tasks. The CIMOM calls the

essential provider and class information from the CIM to handle the consumer requests. The

CIMOM uses the information, obtained from the CIM, to pass the requests to the appropriate

provider.

CIM Repository

The idea of WMI is that configuration and management information from different sources can

be represented uniformly using a schema. The Common Information Model is the schema which

models the managed environment and defines all data elements provided by WMI. The schema

is based on the DMTF Common Information Model Standard (for more details see [13]).

The CIM consists of classes. A class is a model of a resource managed by the WMI. CIM classes

usually represent dynamic resources. This means instances of resources are not stored in the

CIM, but they are dynamically called by a provider. The reason for this is that the operational

state for most managed resources changes frequently and therefore must be read on-demand to

ensure to get the actual information.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 17

CIM classes are hierarchically structured, whereas child classes inherit from parent classes. Some

central and general base classes are maintained by the DMTF, from which software developers,

such as Microsoft developers, derive and create system- or application-specific extension classes.

It is important to understand the basic structure of CIM, as well as to navigate and interpret

its content for writing WMI-based scripts. In section 4.2 we will discuss the CIM and its classes

in detail.

WMI Scripting Library

The WMI scripting library contains some automation objects, through which script languages

can access the WMI infrastructure. The automation objects provide a continuous and uniform

scripting model for the WMI. Once it has been understood how to call one managed resource

type using the scripting library, with the same steps other WMI managed resources can be called

easily.

We will treat the scripting API for WMI in section 4.3.

4.1.3 Consumers

Consumers form the top layer. A consumer can be a script, an enterprise management application,

a web-based application or another administrative program, which accesses and controls

management information that are available through the WMI infrastructure.

More information about the WMI architecture can be found in [12], Part 1.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 18

4.2 Common Information Model

As mentioned in the previous section, the Common Information Model (CIM) repository is

the schema which represents configuration and management information from different sources

uniformly. The CIM is a model of the hardware, operating system and software a computer

consists of. It is the data model for WMI.

Although the CIM repository is able to store some data, its primary purpose is to model the

managed environment. The CIM does not store the voluminous management information it

defines. Rather, most data is dynamically retrieved on-demand by a WMI provider.

Figure 4.2 shows the internal structure of the CIM repository schematically. As one can see,

the CIM uses classes to create the data model. The CIM contains about 5000 classes, not only

the eleven illustrated in the diagram. The number of classes is negligible in the context of WMI

scripting as particularly the concept must be understood. But it is important to know that the

CIM repository is the class store which defines the WMI manageable environment and every

managed resource provided through WMI.

Figure 4.2: Structure of the CIM Repository [12]

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 19

Figure 4.2 illustrates three important CIM concepts to navigate and interpret the WMI schema

successfully.

• The CIM repository is divided into multiple namespaces

• Each namespace can contain one or more of the following class categories: system classes,

core and common classes and/or extension classes

• There are three primary class types: abstract, static and dynamic

These CIM concepts are examined in detail in the following.

4.2.1 Namespaces

CIM classes are divided into namespaces. Namespaces control the scope and visibility of

managed resources class definitions. Each namespace contains a group of related classes, which

represent a certain technology or management area. Within a namespace, all classes must have

a unique class name. Classes within a namespace can not be derived from classes in another

namespace. Therefore identical system classes as well as core and common classes are defined

in more than one namespace.

Most classes modelling Windows managed resources are in the root/cimv2 namespace. However,

this is not the only namespace to be considered when writing scripts.

How do namespaces influence WMI scripts? In a first step each script establishes a connection

to the namespace (see Figure 5.1). Adding the target namespace to the connection, the CIMOM

obtains information where the class definition of the managed resource can be found in the CIM.

If the target namespace is not specified, the script connects to the default namespace (attention:

this is not the same as root/default!). When the class definition of the managed resource can

not be found in the default namespace, an error occurs. To avoid such errors due to invalid

namespaces, it is better to always specify a target namespace.

4.2.2 Class Categories

As shown in Figure 4.2 there are three general categories of classes used to construct the CIM:

system classes, core and common classes and extension classes.

System Classes

System classes are classes which support the internal WMI configuration and operation. By

browsing the CIM system classes can be recognized easily by the two underscores preceding the

name of the system class. In Figure 4.2 __SystemClass, __Provider and __Win32Provider

are system classes.

System classes are either abstract or static. Abstract system classes are blueprints to derive

from other abstract or static system classes. Static system classes define WMI configuration

and operational data which are physically stored in the CIM repository.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 20

Core and Common Classes

The core and common classes have two functions: Primary, they represent the abstract classes

from which software developers derive and create extension classes. Secondary, they define

resources which share certain management areas, but which are independent of a certain

technology or implementation. The DMTF defines and manages a set of core and common

classes, which can be recognized by the prefix CIM_. The four classes CIM_ManagedSystemElement,

CIM_LogicalElement, CIM_Service and CIM_PhysicalElement shown in Figure 4.2 are core

and common classes.

Extension Classes

Extension classes are technology-specific classes created by system and application software

developers. The four classes Win32_BaseService, Win32_Service, Win32_SystemServices and

Win32_ComputerSystem illustrated in Figure 4.2 are Microsoft extension classes. But it should

not be concluded that all Microsoft extension class names start with Win32_. There are also

some that do not. Extension classes are the primary category of classes that will be used for

writing WMI scripts.

4.2.3 Class Types

Classes are the basis of the CIM repository. CIM classes are hierarchically structured whereas

child classes inherit methods, providers and qualifiers form parent classes. For example the

dynamic class Win32_Service is inherited from the abstract class Win32_BaseService, which

is inherited from the abstract class CIM_Service and so on (see Figure 4.2). It is the sum of

classes in the class hierarchy that finally defines a manageable resource. There are three primary

class types: abstract, static and dynamic.

Abstract Classes

An abstract class is a blueprint used to define a new class. Abstract classes act as base classes for

other abstract, static or dynamic classes. Nearly every WMI managed resource class definition

is based on one ore more abstract classes.

Static Classes

A static class defines the data physically stored in the CIM repository. Static classes consist of

instances, which are stored in the CIM repository. The instances of static classes are retrieved

directly from the CIM. They do not use a provider.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 21

Dynamic Classes

A dynamic class models a WMI managed resource which is dynamically called by a provider.

The dynamic class type is mostly used for the definition of extension classes. Dynamic classes

are the class type usually used in WMI scripts.

Association Classes

A fourth class type is the association classes. An association class is an abstract, static or

dynamic class that describes the relationship between two classes or managed resources. The

Win32_SystemServices class shown in Figure 4.2 is an example of a dynamic association class.

It describes the relationship between a computer and the services running on the computer.

4.2.4 Class Structure

As already mentioned, all hardware and software resources that are manageable through WMI

are defined by a class. All class definitions of a manageable resource follow a well defined

structure and syntax as shown in Figure 4.3. Every class definition is made up of properties,

methods and qualifiers.

Figure 4.3: Structure of a Managed Resource Class Definition [12]

Properties

A property describes a manageable resource. Classes use properties to describe several aspects

as identity, configuration and state of a managed resource. For example Win32_Service has a

name, display name, description, start-up type and status. Every property has a name, type

and optional property qualifiers.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 22

Methods

Methods perform actions on manageable resources. Services can be started, stopped, paused

and continued. Each method has a name, return type, optional parameters and optional method

qualifiers.

Qualifiers

Qualifiers provide additional information about classes, properties and methods they apply to.

For example the type of Win32_Service is defined by the Dynamic qualifier of the class. When

writing scripts which retrieve not only information, but modify properties or call methods,

qualifiers become increasingly important as they define the operational characteristics of the

property that will be modified.

• Class Qualifiers: provide operational characteristics about a class (Abstract, Dynamic,

Association qualifier; Provider qualifier; Privileges qualifier)

• Property Qualifiers: provide information about each property (CIMType qualifier; Read/

Write qualifier; Key qualifier)

• Method Qualifier: provide information about each method (Implemented qualifier;

ValueMap qualifier; Privileges qualifier)

There are lot more qualifiers than mentioned above. For the whole list see WMI qualifiers [15].

The information of this section is taken from [12], Part 2. More details about the Common

Information Model can be found there.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 23

4.3 Scripting API for WMI

The WMI scripting library provides a uniform set of controls, in the form of automation objects,

that allow managing and accessing WMI managed resources. It does not make any difference

whether writing code to manage computers, event logs, operating system, processes or services;

the objects of the WMI scripting library always work the same.

The consistency of the automation objects is best communicated through a finite set of tasks

one can perform using the WMI scripting library. Altogether seven basic script types can be

created using the WMI scripting library:

1. Retrieve the instances of a WMI managed resource

2. Read the properties of a WMI managed resource

3. Change the properties of a WMI managed resource

4. Call a method of a WMI managed resource

5. Create a new instance of a WMI managed resource

6. Delete an instance of a WMI managed resource

7. Subscribe to events for monitoring the creation, modification and/or deletion of a WMI

managed resource.

The seven basic script types are like script templates. They can be used to manage any WMI

managed resource. Once a template to manage one type of WMI managed resource has been

understood, this can be adapted easily to hundreds of other WMI managed resources.

4.3.1 WMI Scripting Library Object Model

Now that we know that the WMI scripting library is the system control of the whole WMI

infrastructure, we will look at this more precisely. The WMI scripting library is implemented in a

single automation component named wbemdisp.dll, which is stored in the directory

C:/WINDOWS/ System32/WBEM in Windows XP. Totaling, the WMI scripting library consists

of twenty-four automation objects. A part of them is illustrated in Figure 4.4. But not all

twenty-four automation objects have to be known in detail. Many scripts can be created with

the basic understanding of just four or five of the objects shown Figure 4.4.

It is important to understand the relationship between the automation objects of the WMI

scripting library and the class definitions of managed resources that are stored in the CIM

repository. As illustrated in Section 4.2, class definitions for managed resources are blueprints

for the computer resources that are exposed through WMI. Besides the resources that can

be managed, the blueprints also define the methods and properties unique for each managed

resource.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 24

On the other hand, the WMI scripting library contains a set of general scripts for automation

objects. These scripts are used to authenticate and connect to WMI and subsequently access

instances of WMI managed resources. When an instance of a WMI managed resource is retrieved,

one can access the methods and properties defined by the class definition of managed resources.

Figure 4.4: WMI Scripting Library Object Model, wbemdisp.dll [12]

The lines in Figure 4.4 point out to the object which is obtained by calling a method of the

originating object. For example, calling the ConnectServer method of SWbemLocator returns a

SWbemServices object. Calling the ExecNotificationQuery method of SWbemServices returns

a SWbemEventSource object. On the other hand, calling the SWbemServices ExecQuery method

returns a SWbemObjectSet collection. Finally, calling the Get method of SWbemObjectSet

returns a SWbemObject object.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 25

• SWbemServices is the object that represents an authenticated connection to a WMI

namespace on a local or remote computer.

• SWbemObjectSet is a listing of null or more SWbemObject objects. Each SWbemObject

in a SWbemObjectSet can represent either an instance of a WMI managed resource or an

instance of a class definition.

• SWbemObject is the object with several identities, which imitates the resource one is

managing. For example, if instances of a Win32_Process managed resource are retrieved,

SWbemObject adopts an identity that is modeled after the class definition of Win32_Process.

Otherwise, if instances of a Win32_Service managed resource are retrieved, SWbemObject

adopts an identity modeled about the Win32_Service class.

The SWbemObject object is able to transform itself to an arbitrary manageable resource

that is defined in the CIM. Once we know how to connect and retrieve instances, everything

is a SWbemObject.

These automation objects are part of nearly all WMI scripts. For more information about the

WMI scripting library see [12], Part 3. Details about specific objects, methods or properties of

the scripting library will be found on [16].

4.4 WMI Query Language

WMI supports a large and powerful query facility for retrieving instances of managed resources.

For example, a WMI query can request only services with the StartMode auto which are in

the state stopped. So, WMI queries provide an efficient mechanism for retrieving instances,

since they return only those instances and properties which correspond to a certain criteria.

Additionally, the queries are treated on the target computer and not on the source computer

where the script is running. Therefore, WMI queries can essentially reduce the amount of

network traffic.

WMI queries are created using the WMI Query Language (WQL). WQL is a subset of the

Structured Query Language (SQL) with minor semantic changes to support WMI. The query

string defines criteria that must be fulfilled to result in a successful match. After the definition

of the query string the query is passed to the WMI service using the ExecQuery method of

SWbemServices. Instances of the managed resource that correspond to the query are returned

to the script as a SWbemObjectSet collection.

Details about querying with WQL can be found on [12], Part 3 .

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 26

4.5 Network Configuration using WMI

The Windows Management Instrumentation enables system administrators to automate many

common tasks involved in TCP/IP network clients. Using WMI, the following network tasks

can be managed:

• Retrieve and manage TCP/IP client settings

• Work with remote hosts

• Configure DHCP and static IP addresses

• Manage DNS client settings

• Work with NetBIOS and WINS

For the work with the network and network configuration the following WMI classes are

important:

• Win32 PingStatus: represents the values returned by the standard ping command.

• Win32 NetworkAdapterConfiguration: represents the attributes and behaviours of

a network adapter.

• Win32 NetworkAdapter: represents a network adapter on a Windows system.

4.5.1 Ethernet

To configure the Ethernet card with the settings from Verinec, the WMI class Win32_Network

AdapterConfiguration of the namespace root/cimv2 is used. This class represents the

attributes and behaviours of a network adapter. It includes extra properties and attributes that

support the management of the TCP/IP and Internetworking Packet Exchange (IPX) protocols,

which are independent of the network adapter.

The following methods are used to configure the Ethernet card:

• EnableDHCP: This method enables the Dynamic Host Configuration Protocol (DHCP)

for service with this network adapter. DHCP allows IP addresses to be dynamically

allocated. This method has no parameters.

• EnableStatic: This method enables static TCP/IP addressing for the target network

adapter. This method has two parameters: IPAddress which lists all the static IP

addresses for the current network adapter and SubnetMask that complement the values in

the IPAddress parameter. Both parameters are required.

• SetDNSServerSearchOrder: This method uses an array of string elements to set

the ordered list of DNS servers. The only parameter of this method is the required

DNSServerSearchOrder which is a list of server IP addresses to query for DNS servers.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 27

• SetGateways: This method specifies a list of gateways for routing packets to a subnet

which is different from the subnet that the network adapter is connected to. This method

only works when the Network Interface Card (NIC) is in static IP mode. This method has

two parameters: DefaultIPGateway (required) is a list of IP addresses to gateways where

network packets are routed and GatewayCostMetric (optional) which assigns a value that

ranges from 1 to 9999, which is used to calculate the fastest and most reliable routes. The

default value for a gateway is one.

The return values of these methods are zero for a successful completion when no reboot is

required, one for a successful completion if a reboot is required. Any other number produces an

error.

The Win32_NetworkAdapterConfiguration class with all its properties and methods is

explained in detail on [17].

4.5.2 Dial-Up Modem

Another hardware component to be configured in Verinec is the dial-up modem. There are two

Win32 classes in the namespace root/cimv2 provided to handle telephone modems:

• Win32 POTSModem: represents the services and characteristics of a Plain Old

Telephone Service (POTS) modem on a Windows system.

• Win32 POTSModemToSerialPort: relates a modem and the serial port the modem

uses.

The problem of these classes is that they have no or no suitable methods, and the properties are

all read-only. It was tried to write the properties anyway, but without success. As a result there

is no way to modify the properties and so they can not be used to configure a dial-up modem.

There is another interesting class defined in the root/RSOP/Computer namespace:

• RSOP IEConnectionDialUpCredential: represents the settings used by the RasDial

function when establishing a dial-up (remote access) connection to the Internet using

Microsoft Internet Explorer.

Actually this class establishes a connection for the Microsoft Internet Explorer. But probably

it would also work for other browsers. But we have the same problem as above. The class does

not support any methods and the properties are all read-only.

Although questions were posted to different forums, so far no solution was found, how one can

configure a dial-up modem using WMI. This still needs investigation.

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 28

4.6 User Account Management

A planned service to handle in Verinec is the user account management. This section presents

how the user account management is handled on Windows machines.

There are two different possibilities to manage user accounts in Windows XP Professional,

depending on whether the computer is member of a workgroup or of a network domain. As in

bigger networks computers are part of a network we will look at the approach where computers

are members of a network domain.

On a computer which is part of a network domain, a user must be a member of at least one

group. By adding a user to a group, the user gets all the permissions and rights assigned to that

group. A user can be assigned to the following groups:

• Administrators: Members of this group have the largest amount of default permissions

and the ability to change their own permissions. They can configure and mange the system.

• Backup Operators: Members of this group can perform backup and restore operations

on the computer, regardless of any permissions. But they can not change security settings.

• Guests: Allows users to log on the computer without the need for a separate account for

each user. There is no password for the guest account.

• Help Service Group: Members of this group can use applications to help diagnose

system problems.

• Network Configuration Operators: Members of this group are able to provide limited

administrative functions, such as assigning IP addresses.

• Power Users: Members of this group lie somewhere between administrators and users.

They can create new user accounts, but can only modify the accounts they have created.

They can install and modify applications and they can install local printers.

• Remote Desktop Users: Members of this group are allowed to log on remotely.

• Replicator: Members of this group are allowed to replicate files across a domain.

• Users: Members of this group can perform most common tasks, such as running

applications. They have limited access to the file system and have read and write

permissions only on their own profile.

So, finally every user account belongs to a group, which belongs on its part to a domain.

Of course, a user account needs a user name as well as a password for authentication.

For more information about the user account management see [18].

CHAPTER 4. WINDOWS MANAGEMENT INSTRUMENTATION 29

4.6.1 User Account Management in WMI

WMI provides a couple of classes for the representation of user accounts:

• Win32 Account: contains information about user accounts and group accounts known

to the Windows system.

• Win32 Group: represents data about a group account. A group account allows access

privileges to be changed for a list of users.

• Win32 GroupInDomain: identifies the group accounts associated with a Windows

domain.

• Win32 GroupUser: relates a group and an account that is a member of that group.

• Win32 UserAccount: contains information about a user account on a Windows

operating system.

• Win32 SystemAccount: represents a system account. The system account is used by

the operating system and services that run under Windows.

• Win32 UserInDomain: relates a user account and a Windows domain.

The WMI classes Win32_Group and Win32_UserAccount only provide one method Rename that

allows the renaming of the group respectively the user account. All other classes do not

provide any methods and the properties are read-only. Just the Win32_UserAccount class

has some writeable properties. Though these are not enough to handle the whole user account

management.

The Microsoft TechNet Script Center [19] provides a lot of other scripts for the management of

users (follow the path TechNet Home > Script Repository > Active Directory > UserAccounts).

Probably there is a possibility to fit them in Jawin as with Jawin one can do all the things one

can do using scripts. However, this still needs investigation.

Chapter 5

Jawin

As already mentioned, the Java / Win32 integration project (Jawin) is an open source

architecture for interoperation between Java and components exposed through Microsoft’s

Component Object Model or through Win32 Dynamic Link Libraries.

Jawin can be used for interaction with scriptable applications. One can use Jawin to call

scriptable logic components such as Microsoft’s COM-based XML parsers and tools. Jawin can

also be used to access Win32 API features such as the Windows registry, security API’s and the

event log. Jawin allows the Java applications to call any COM- and DLL-based code, without

writing any JNI code. Using Jawin, one can call any component that can be scripted in the

Windows environment.

5.1 Getting Started with Jawin

Jawin requires Java Development Kit (JDK) 1.3 or higher and can only be used on Windows

machines with COM-support. All versions since Windows 95 have some kind of COM-support.

Before writing code using Jawin, the single Jawin library must be loaded. No other native code is

necessary. Jawin itself is a standard JNI library. The Jawin native code is stored in the jawin.dll

file, which can be found on the CD under WindowsTranslator/lib. To make the Jawin library

visible to the application, the java.library.path property must be set to point to the location of

jawin.dll. Then the jar file jawin.jar that is stored on the CD under WindowsTranslator/java/jars

must be put on the classpath of the project.

For an easier use of the WMI API, we have to generate Jawin stubs for the native objects. The

Jawin Type Browser makes it possible to automatically generate the necessary Java stubs. No

COM knowledge is required to use it successfully. How stubs can be created using the Jawin

Type Browser is described in detail in [10]. In order to use the WMI API, stubs from the WMI

scripting type library wbemdisp.tlb have to be created. This library will be exported form the

C:/WINDOWS/SYSTEM32/WBEM directory. The generated stubs are stored as wmi.jar and

can be found on the CD under WindowsTranslator/java/jars.

30

CHAPTER 5. JAWIN 31

5.2 WMI Scripts in Jawin

Every WMI script has three steps in common:

1. Connecting to WMI services

2. Retrieve instances of WMI managed resources

3. Administrate WMI managed resources

The example in Figure 5.1 shows how a static IP Address can be assigned to a network adapter

following these steps.

WMI Script in Jawin

import wmi.script.*;

import org.jawin.*;

public class StaticIP {

public static void main(String[] args) throws COMException {

String host = ".";

String username = "";

String password = "";

String namespace = "root/cimv2";

String query ="SELECT * FROM Win32_NetworkAdapterConfiguration WHERE Index = 1";

String[] IPAddresses = {"134.21.54.85"};

String[] SubnetMasks = {"255.255.255.0"};

String MethodName = "EnableStatic";

try{

ISWbemLocator locator = new ISWbemLocator ("WbemScripting.SWbemLocator");

ISWbemServices wbemServices = locator.ConnectServer

(host, namespace, user, password, "","",0,null);

ISWbemObjectSet wbemObjectSet = wbemServices.ExecQuery(query, "WQL", 0, null);

int sizeOfObjectSet = wbemObjectSet.getCount();

DispatchPtr[] results = new DispatchPtr[sizeOfObjectSet];

IUnknown uk = wbemObjectSet.get_NewEnum();

IEnumVariant ev = (IEnumVariant) uk.queryInterface(IEnumVariant.class);

ev.Next(sizeOfObjectSet, results);

for (int i=0; i<results.length; i++){

ISWbemObject wbemObject = (ISWbemObject)

results[i].queryInterface(ISWbemObject.class);

ISWbemMethodSet methodSet = (ISWbemMethodSet) wbemObject.getMethods_();

ISWbemMethod method = methodSet.Item(MethodName, 0);

ISWbemObject inParamClass = method.getInParameters();

ISWbemObject inParamInstance = inParamClass.SpawnInstance_(0);

inParamInstance.put("IPAddress", IPAddresses);

inParamInstance.put("SubnetMask", SubnetMasks);

ISWbemObject outputParam = null;

outputParam = wbemObject.ExecMethod_

(MethodName, inParamInstance, 0, null);

}

}

catch (COMException e){

System.out.println("COMError: " + e.hresult);

}

}

}

Figure 5.1: Assign a Static IP Address to a Network Adapter using Jawin

CHAPTER 5. JAWIN 32

In a first step, some variables are declared which make the code more readable. The dot ”.” of

the variable ComputerName indicates the local computer. If a remote computer will be accessed,

the dot can be changed to the host name of the computer that will be accessed. As we will

manage the local host, the variables username and password are empty strings. User credentials

can only be used for remote connections. On the local machine, WMI can only be used with

the rights of the user running the application.

The first thing the WMI script does is establishing a connection to the WMI. For this purpose,

we have to create an ISWbemLocator. By calling the ConnectServer method we connect to the

namespace on the computer specified in the host parameter. The target computer must have

WMI installed.

In a second step, the script retrieves the instances of the Win32_NetworkAdapterConfiguration

class where the Index equals "1" using the ExecQuery method. The index number specifies

which network adapter is addressed. At this point, this is the Ethernet card of the first slot.

The third step is to manipulate the configuration of the network adapter. As the ExecQuery

method returns a WbemObjectSet collection, we have to visit each element of this collection. In

this example the size of the WbemObjectSet is only one, but this does not affect the script. With

the getMethods_ method we get a collection of all the methods of the Win32_NetworkAdapter

Configuration class. Then with the Item method we get the method we will execute. In this

case this is EnableStatic. This method has two parameters, so we have to fill in the input

parameters. For this, we first get the class of the input parameters using the getInParameters

method. Then with the SpawnInstance_ method an instance of this class will be created. Now

we fill in the parameters with their values using the put method. The input parameter IPAddress

will be filled with the value of IPAddresses and the input parameter SubnetMask will be filled

with the value of SubnetMasks. Finally, the method will be executed using ExecMethod_ with

the method name and the input parameters.

The types starting with ISWbem describe WMI scripting objects. They were treated in detail in

Section 4.3.

Now we have the basic structure of a script. If we will access other WMI managed resources, we

can just change the query, the method name and the input parameters. The rest of the script

keeps the same.

Chapter 6

Windows Translator in Detail

The base of Verinec is the abstract network definition described using the XML syntax.

A network consists of nodes. Nodes may be workstations, servers or other devices like switches,

routers or hardware firewalls. Every node contains a hardware section describing the physical

part and a service section, where all the services supported by this node are defined. Note, that

in the translation context, the children of the hardware section (Ethernet, serial, WLAN) are

treated like services. Figure 6.1 shows a simple node of a network. More information about the

network definition can be found on [1] and [2].

A simple node

<node hostname="pc01">

<hardware>

<etherent name="First Ethernet Card">

<ethernet-binding name"eth0" id="xyz">

<nw id="i01" address="134.21.54.85" subnet="255.255.255.0"

gateway="134.21.54.1" type="ip">

<nw-dnsserver ip="134.21.14.50" />

<nw-dnsserver ip="134.21.1.31" />

</nw>

</ethernet-binding>

</ethernet>

</hardware>

<services>

<!-- Service Configurations -->

</services>

</node>

Figure 6.1: An Example of a Simple Node

The objective of the translator is to translate the abstract network configuration into system

specific configuration. Every machine provides several services and for each service a particular

translator has to be written. As a system can have more than one implementation for a service

and different operating systems handle services differently, there might be many implementations

for the same service. Metadata contains the information which translator has to be used.

33

CHAPTER 6. WINDOWS TRANSLATOR IN DETAIL 34

6.1 Translation Process

In a first step, the translator gets the appropriate translation XSLT and restriction XSLT from

the repository. A type tag specifies which translator and restrictor to use with a service. If there

are some unsupported features for the translator selected, the restrictor will create warnings to

the user. Then the translation begins. The proper translator is chosen from the repository

and applied to the node. Finally the produced configuration data is distributed to the specified

system. Figure 6.2 illustrates this process.

Configuration
Machine specific

Configuration
on Machines

selected translator

Restriction
warnings for

Network
Definition XSL Repository

Translation Restriction

Distribution

Import

Check existing
configuration

Translator

������

Figure 6.2: The Translation Process in detail [1]

6.1.1 XSL Repository

Every translation is composed of two XSLT documents which are stored in the repository:

translator and restrictor. The translator XSLT translates the abstract configuration into machine

specific configuration. The restrictor XSLT produces warnings to the user if some data can not

be translated using the appropriate translator. Even if the translator is able to translate the

whole configuration, a restrictor file is needed. In this case an empty result can be produced.

Both, the translation XSLT and the restriction XSLT, are identified by the service name

and their own name. Both files must have the same name, usually the name of the service

implementation with the extension .xsl. For example a service name can be ethernet and an

implementation name can be windows-xp (see Figure 6.3).

The type tag specifies, which translator has to be used with a service. The prefix tr is usually

used for the translation namespace. Figure 6.3 shows a type definition for the service ethernet

running in a Windows XP machine. The translator used for this service is named windows-xp.

There might be additional service tags, for other services, within a type.

CHAPTER 6. WINDOWS TRANSLATOR IN DETAIL 35

Node type definition

<tr:type name="windows-xp" id="typ01">

<tr:service name="ethernet" translation="windows-xp" />

</tr:type>

Figure 6.3: An Example of a Node Type Definition

6.1.2 Restriction

Sometimes an implementation of a service might not support all the features that can be

configured in Verinec. For this case a restictor XSLT can output warnings for unsupported

features. Restrictions are also produced if the schema is not valid or if something is missing to

configure the feature correctly.

For example, Windows does not support the configuration of peerdns or bootp of an

Ethernet card, which are configurable in Verinec’s abstract configuration XML. So the restrictor

windows-xp.xsl produces warnings if someone tries to set these features.

6.1.3 Translation

The translator is responsible to transform the abstract configuration into machine specific

configuration using XSLT. The resulting documents contain the data to be distributed to the

target system.

For Windows machines, the translator creates a result-wmi file. This is an XML file that

contains the data needed to configure the services through the Windows Management

Instrumentation. Figure 6.4 shows an example of a configuration output for an Ethernet card.

Configuration Output

<configuration xmlns="http://diuf.unifr/.../verinec/configuration"

xmlns:vn="http://diuf.unifr.ch/.../verinec/node"

xmlns:tr="http://diuf.unifr.ch/.../verinec/translation">

<service name="ethernet">

<tr:target xmlns="http://diuf.unifr.ch/.../verinec/node" name="target01">

<tr:wmi host="pc01" />

</tr:target>

<result-wmi>

<!--***Ethernet card configured by VeriNeC: ethernet 0***-->

<wmi class="Win32_NetworkAdapterConfiguration" namespace="root/cimv2"

wqlKey="Index" wqlKeyValue="1">

<method name="EnableStatic">

<param name="IPAddress" type="ArrayOfString">

<param-value value="134.21.54.85" />

</param>

<param name="SubnetMask" type="ArrayOfString">

<param-value value="255.255.255.0" />

</param>

</method>

</wmi>

</result-wmi>

</service>

</configuration>

Figure 6.4: Configuration Output for an Ethernet Card in Windows XP

CHAPTER 6. WINDOWS TRANSLATOR IN DETAIL 36

The result-wmi has to satisfy the configuration schema. This schema is described in detail in

the next subsection.

Result-WMI Schema

Figure 6.4 shows how the result-wmi is structured. The result-wmi schema is part of the

configuration schema. It defines which data the XML file must contain for a successful

distribution. This includes the WMI methods with the corresponding parameters as well as

some additional information like the WMI class used and the namespace where this is stored.

The class attribute specifies the name of the WMI class one want to access. The namespace

attribute corresponds to the WMI namespace where the class is stored. The wqlKey and

wqlKeyValue atrributes define the name of the property that forms the basis of the WQL

WHERE clause and the appropriate value.

The method element specifies the method to be executed with the corresponding parameters.

So far only parameters of the type ArrayOfString are supported.

Each result-wmi has one or more wmi elements. Every wmi element can have one or more

method elements. A method element has zero or more param elements. Each param element

can have one or more param-value elements. If there is more than one param-value, they are

passed as an array to WMI.

6.1.4 Distribution

To distribute the configuration data on the target machine, Verinec has to know which

distributor to use. This information is stored in the tr:target tag. Targets can either

be defined globally in the nodetype or locally for a node. Figures 6.5 and 6.6 shows two

possibilities of targets for the configuration of a Windows machine.

Target without User Credentials

<tr:target name="target01">

<tr:wmi host="pc01" />

</tr:target>

Figure 6.5: Target for Local or Remote Connections

Target with User Credentials

<tr:target name="target02">

<tr:wmi host="pc02" username="me@unifr" password="hello" />

</tr:target>

Figure 6.6: Target for Remote Connections

CHAPTER 6. WINDOWS TRANSLATOR IN DETAIL 37

The target defined in Figure 6.5 can be used for local or remote connections. User credentials

can not be used for local connections. For the connection to a remote machine they are

optional. If the user credentials are not specified, the data of the user currently logged on

is used. The target defined in Figure 6.6 can only be used for connections to remote machines.

If the username attribute is defined, also the password attribute must be specified. But the

password attribute can be defined without defining the username attribute. In this case the user

currently logged on is used. The username can be in the form of either user or user@domain.

The host attribute is always required. It defines which machine will be configured. The

specification of the target is defined in the translation schema.

The tr:target tag tells the translator module which distributor has to be used. In this case

this will be the suitable distributor for tr:wmi which is DistWMI.java. This distributor was

implemented to configure Windows machines using the Windows Management Instrumentation.

The aim of DistWMI.java is to distribute the data of the result-wmi document to a specified

system. The basic structure of DistWMI.java is the same as shown in Figure 5.1. The

namespace, method name, parameter name and value, as well as the data of the query are

stored in the result-wmi. The host and user credentials are defined in the tr:target tag. As

result-wmi is an XML file, its data can be retrieved using the Java Document Object Model

(JDOM). The distributor outputs an exception, if an error occurs while executing the method.

Otherwise the configuration was successful.

So far, only the parameter type ArrayOfString is supported. There exist other parameter types

which are not used so far. If in future other types will be needed, they have to be added. The

pre- and post processing is not yet implemented. If an automate machine restart is required,

the Reboot method of the Win32_OperatingSystem can be used.

Chapter 7

Conclusion

7.1 Criticism of the Windows Management Instrumentation

The Windows Management Instrumentation (WMI) is a powerful instrument for accessing and

monitoring Windows resources. There exist classes for almost every manageable resource in

Windows. But for the configuration of resources, WMI has to be expanded. Many classes

provide none or only a few methods to manage Windows resources. Also, most of the properties

are read-only.

7.2 Criticism of the Project

The Windows translator is able to configure an Ethernet card automatically. For this, a

translation XSLT as well as a restriction XSLT were created, which are named windows-xp.xsl.

Then a distributor DistWMI.java was implemented that distributes the data of the resulting

file through WMI. Actually, it was planned to configure also a dial-up modem. But this is not

possible as WMI provides no methods for this.

The distributer DistWMI.java, as it was implemented, can only configure resources through

methods. Since many WMI classes provide no methods, it would probably be an idea to configure

some resources anyway through the Windows registry. It is possible to access the registry using

WMI. The StdRegProv class of the root/default namespace allows WMI scripts to interact

with the Windows registry. In any case, the distributor has to be expanded to configure dial-up

modems and other services that are configurable with Verinec.

Retrospective, a lot of time was invested in the research. It was difficult to find a good solution

for configuring Windows machines remotely using a Java API. Also the approach chosen is not

perfect. Even if it seemed as, when the documentation on WMI was read.

Fact is, that the Windows translator still needs a lot of investigation before it works as it should.

There are some services that can not be handled so far, as there are no methods to manage them.

Furthermore, there are services that are not studied in this thesis and consequently have to be

analyzed in the future.

38

Bibliography

[1] David Buchmann: Verinec Translation Module, University of Fribourg, Switzerland

[2] D. Jungo, D. Buchmann, U. Ultes-Nitsche: The Role of Simulation in a Network

Configuration Engineering Approach, Department of Computer Science, University of

Fribourg, Switzerland

[3] Peter Monadjemi, 2002: Windows XP Home Edition: Konfiguration, Kommunikation,

Profitipps, Mark + Technik Verlag, ISBN: 3-8272-6138-4

[4] jRegistryKey

http://www.bayequities.com/tech/Products/jreg key.shtml

(last visited: 17.06.2005)

[5] JNIRegistry

http://www.trustice.com/java/jnireg (last visited: 17.06.2005)

[6] Microsoft’s .NET Homepage

http://www.microsoft.com/net/ (last visited: 17.06.2005)

[7] Dinar Dalvi [et al.], 2001: Professional XML for .NET Developers, Wrox Press,

ISBN: 1-861005-31-8

[8] Download WMI for Windows 95/98/NT

http://www.microsoft.com/downloads (last visited: 17.06.2005)

[9] WBEM Services

http://wbemservices.sourceforge.net/ (last visited: 17.06.2005)

[10] Jawin - A Java/Win32 interoperability project

http://jawinproject.sourceforge.net. (last visited: 17.06.2005)

[11] Holger Schwichtenberg, 2003: Windows Scripting: Automatisierte Systemadiministration

mit VBScript, Visual Basic 6.0 und Visual Basic .NET unter COM und dem .NET

Framework, Addison-Wesley, ISBN: 3-8273-2061-5

39

http://www.bayequities.com/tech/Products/jreg_key.shtml
http://www.trustice.com/java/jnireg
http://www.microsoft.com/net/
http://www.microsoft.com/downloads
http://wbemservices.sourceforge.net/
http://jawinproject.sourceforge.net.

BIBLIOGRAPHY 40

[12] G. Stemp, D. Tsaltas, B. Wells, 2002/2003: WMI Scripting Primer: Part 1, 2 and 3,

Microsoft Corporation

Part 1: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnclinic/html/scripting06112002.asp (last visited: 17.06.2005)

Part 2: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnclinic/html/scripting08132002.asp (last visited: 17.06.2005)

Part 3: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnclinic/html/scripting01142003.asp (last visited: 17.06.2005)

[13] DMTF Common Information Model (CIM) Standards

http://www.dmtf.org/standards/cim/ (last visited: 17.06.2005)

[14] Windows Management Instrumentation Tutorial

http://www.microsoft.com/downloads/details.aspx?familyid=

720F0CAE-64A7-457F-BB95-E4F33E0CBC55&displaylang=en (last visited: 17.06.2005)

[15] WMI Qualifiers

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/

wmi/wmi qualifiers.asp (last visited: 17.06.2005)

[16] WMI Scripting API

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/

wmi/scripting api for wmi.asp (last visited: 17.06.2005)

[17] WMI Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/

wmi/wmi reference.asp (last visited: 17.06.2005)

[18] Robert Elsenpeter, Toby J. Velte, 2002: Windows XP Professional Network Administration,

McGraw-Hill/Osborne, ISBN: 0-07-222504-1

[19] Microsoft TechNet Script Center

http://www.microsoft.com/technet/scriptcenter/default.mspx

(last visited: 17.06.2005)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnclinic/html/scripting06112002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnclinic/html/scripting06112002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnclinic/html/scripting08132002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnclinic/html/scripting08132002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnclinic/html/scripting01142003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnclinic/html/scripting01142003.asp
http://www.dmtf.org/standards/cim/
http://www.microsoft.com/downloads/details.aspx?familyid=720F0CAE-64A7-457F-BB95-E4F33E0CBC55&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=720F0CAE-64A7-457F-BB95-E4F33E0CBC55&displaylang=en
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_qualifiers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_qualifiers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/scripting_api_for_wmi.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/scripting_api_for_wmi.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp
http://www.microsoft.com/technet/scriptcenter/default.mspx

Appendix A

Acronyms

API Application Programming Interface: An interface through which an application

software communicates and exchange data with other software.

CIM Common Information Model: An implementation-neutral, object-oriented schema for

describing network management information.

CIMOM Common Information Model Object Manager: Facilitates the interaction

between consumer and provider whereas all requests from the WMI pass through the

CIMOM.

CMIP Common Management Information Protocol: A protocol for network manage-

ment, which defines the communication between network management applications and

network agents.

COM Component Object Model: A Microsoft technology for software componentry, which

is used to enable cross-software communication.

DCOM Distributed Component Object Model: A Microsoft proprietary technology for

software components distributed over several networked computers.

DHCP Dynamic Host Configuration Protocol: A client-server networking protocol for

automatically configuring networked computers.

DLL Dynamic Link Library: A Microsoft Windows binary application library file format.

DMTF Desktop Management Task Force: An industry consortium that develops, supports,

and maintains standards for systems management of PC systems and products, to

reduce total cost of ownership.

GUI Graphical User Interface: A method of interacting with a computer through a

metaphor of direct manipulation of graphical images and widgets in addition to text.

IPX Internetwork Packet Exchange: A network protocol developed by Novell.

JDOM Java Document Object Model: A library for working with XML completely based

on Java concepts.

41

APPENDIX A. ACRONYMS 42

JNI Java Native Interface: A programming framework that allows Java code running in

the Java virtual machine (VM) to call and be called by native applications (programs

specific to a hardware and operating system platform) and libraries written in other

languages.

NIC Network Interface Card: A piece of computer hardware designed to provide for com-

puter communication over a computer network.

POTS Plain Old Telephone Service: Services available from analogue telephones prior to

the introduction of electronic telephone exchanges into the public switched telephone

network.

SNMP Simple Network Management Protocol: A protocol to administrate computers and

network components remotely.

SQL Structured Query Language: A computer language used to create, modify and retrieve

data from relational database management systems.

WBEM Web-Based Enterprise Management: An initiative based on a set of management

and Internet standard technologies developed to unify the management of enterprise

computing environments.

WMI Windows Management Instrumentation: Allows scripting languages like VBScript

to manage Windows PCs and servers, both locally and remotely.

WQL WMI Query Language: A subset of the Structured Query Language (SQL) with

minor semantic changes to support WMI.

XML Extensible Markup Language: A W3C-recommended general-purpose markup

language for creating special-purpose markup languages (it is a metaformat), used to

facilitate the sharing of structured text and information across the Internet.

XSLT eXtensible Stylesheet Language Transformations: An XML-based scripting language

used for transforming XML documents into other XML or plain-text documents.

Appendix B

Result-WMI Schema

This is part of the configuration.xsd schema.

<!-- ******** Windows Management Instrumentation WMI ******** -->

<xs:element name="result-wmi">
<xs:annotation>
<xs:documentation>

An XML with the configuration data to be distributed
through the Windows Management Instrumentation (WMI).

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element ref="wmi" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="wmi">
<xs:annotation>

<xs:documentation>
Contains the neccessary data to access the wmi class.

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element ref="method" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="class" type="xs:string" use="required">

<xs:annotation>
<xs:documentation>

The name of the wmi class used to handle the service.
</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="namspace" type="xs:string" use="required">

43

APPENDIX B. RESULT-WMI SCHEMA 44

<xs:annotation>
<xs:documentation>

The namespace where the wmi class is stored.
</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="wqlKey" type="xs:string" use="required">

<xs:annotation>
<xs:documentation>

Defines the name of the property that forms the basis of
the WQL WHERE clause.

</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="wqlKeyValue" type="xs:string" use="required">

<xs:annotation>
<xs:documentation>

Defines the appropriate value to wqlKey.
</xs:documentation>

</xs:annotation>
</xs:attribute>

</xs:complexType>
</xs:element>

<xs:element name="method">
<xs:annotation>

<xs:documentation>
Defines the method to be executed.

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element ref="param" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required">

<xs:annotation>
<xs:documentation>

The name of the method to be executed.
</xs:documentation>

</xs:annotation>
</xs:attribute>

</xs:complexType>
</xs:element>

<xs:element name="param">
<xs:annotation>
<xs:documentation>

The params passed to the method.
</xs:documentation>
</xs:annotation>

APPENDIX B. RESULT-WMI SCHEMA 45

<xs:complexType>
<xs:sequence>

<xs:element ref="param-value" minOccurs="1" maxOccurs="unbounded">
<xs:annotation>

<xs:documentation>
If there is more than one param-value, they are passed
as ArrayOfString to WMI.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required">

<xs:annotation>
<xs:documentation>

The name of the input parameter assigned to the method.
</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="type" type="xs:string" use="required">

<xs:annotation>
<xs:documentation>
The type of the input parameter assigned to the method.
So far only ArrayOfString is supported.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

</xs:element>

<xs:element name="param-value">
<xs:annotation>

<xs:documentation>
The value of the input parameter.

</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>

Appendix C

Directory Organization on the CD

+-WindowsTranslator
|
|
|+-doc
| |
| |+-experiments
| |
| |+-presentations
| |
| |+-report
| |
| |+-latex
| | |
| | |+-fig
| |
| |+-pdf
|
|
|+-java
| |
| |+-doc
| | |
| | |+-api
| |
| |+-jars
| |
| |+-res
| | |
| | |+-translation
| | |
| | |+-ethernet
| | |
| | |+-restrictors
| | |
| | |+-translators
| |

46

APPENDIX C. DIRECTORY ORGANIZATION ON THE CD 47

| |+-src
| | |
| | |+-verinec
| | |
| | |+-translation
| | |
| | |+-doc-files
| | |
| | |+-gui
| | |
| | |+-repository
| |
| |+-test
| |
| |+-verinec
| |
| |+-translation
| |
| |+-repository
|
|
|+-lib

	Contents
	List of Figures
	Introduction
	Objectives
	Overview

	VeriNeC
	Architecture of VeriNeC
	Distribution

	Research
	Registry
	Java API for Registry

	XML
	WMI
	Java API for WMI

	Conclusion

	Windows Management Instrumentation
	WMI Architecture
	Managed Resources
	WMI Infrastructure
	Consumers

	Common Information Model
	Namespaces
	Class Categories
	Class Types
	Class Structure

	Scripting API for WMI
	WMI Scripting Library Object Model

	WMI Query Language
	Network Configuration using WMI
	Ethernet
	Dial-Up Modem

	User Account Management
	User Account Management in WMI

	Jawin
	Getting Started with Jawin
	WMI Scripts in Jawin

	Windows Translator in Detail
	Translation Process
	XSL Repository
	Restriction
	Translation
	Distribution

	Conclusion
	Criticism of the Windows Management Instrumentation
	Criticism of the Project

	Bibliography
	Acronyms
	Result-WMI Schema
	Directory Organization on the CD

