
Bachelor Thesis ”VeriNeC Editor GUI”

Damian Vogel damian.vogel@unifr.ch

September 30, 2005

Bachelor of Science in Computer Science

University of Fribourg

Verinec Project

Telecommunications, Networks & Security Research Group

Department of Computer Science



Abstract

This thesis describes the environment and the development of a graphical user

interface (GUI) which facilitates configuring computers in the network simula-

tion and configuration program Verinec. This paper gives an overview of the

functionality, the implementational choices and decisions, and the program-

ming principles used in the code.

2



Contents

1 Introduction 4

1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Personal Motivation . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Functionality 5

3 Implementation 7

3.1 EditorComponent Classes . . . . . . . . . . . . . . . . . . . . . 7

3.2 EditorPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 EditorTextField . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 EditorMultiTextField . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 EditorComboBox . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 NodeEditor and DisplayComponent . . . . . . . . . . . . . . . . 12

3.7 Static Class: ElementType . . . . . . . . . . . . . . . . . . . . . 14

3.8 Static Class: InputValidator . . . . . . . . . . . . . . . . . . . . 14

4 Conclusion 15

4.1 Verinec General Issues . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Future Editor GUI Development . . . . . . . . . . . . . . . . . . 16

4.3 Personal Closing Words . . . . . . . . . . . . . . . . . . . . . . 17

A Bibliography 18

B Licensing 18

C Code modification in the Configurator class 19

3



1 Introduction

1.1 Environment

The Bachelor Thesis ”Editor GUI” is part of the Verinec Project of the telecom-
munications, networks & security Research Group TNS of the of the Depart-
ment of Computer Science at the University of Fribourg.

The Verinec project aims to simplify network configuration. It is
based upon an abstract definition of a network and the nodes in
that network expressed in XML. Each node consists of its hardware
(network interfaces) and a set of services such as DNS server, fire-
walls, and so on. The abstract configuration is translated automat-
ically into configuration specific to the actual hard- and software
used in the network. The simulator part of Verinec allows to check
if the configuration will fullfill the desired behaviour prior to really
configure the nodes. [1]

1.2 Assignment

The Verinec project is currently in a state where nodes can be created and
interfaces can be added. But if one wishes to change the name of a node or
the IP Address of an interface, the XML files have to be edited by hand. My
project is to implement a Graphical User Interface (GUI), which facilitates
configuration of the nodes and interfaces, similar to a configuration panel in
an operating system.

The assignment wording is as follows:

The VeriNeC GUI is currently capable of displaying a network and
the simulator output. One can also create nodes and connect them
to a network.

We plan to have editor interfaces for each service of the node to
allow the user to edit the node configuration using the GUI. There
will be a module for interfaces, DNS Server, Firewall and so on.

This project is to write editor modules for two or three services.
You will begin with a simple service and then choose a more com-
plex one.

A simplified example is the
verinec.networkanalyser.core.DefaultComponentEditor [2]

4

http://diuf.unifr.ch/tns/projects/verinec/
http://diuf.unifr.ch/tns/
http://diuf.unifr.ch
http://diuf.unifr.ch
http://www.unifr.ch


The technologies to use are

◦ Java: Swing, JDOM

◦ Network Technology (i.e. DNS, Firewall, ...)

1.3 Personal Motivation

I have applied for this project mainly because of three reasons. First this
project is about concrete programming and implementation. There are no big
theoretical researches to be done, and I have to write code which will result in
a concrete executable application.

Second, I like GUI specific issues, or more general human – computer interac-
tion issues. I think it is very important to reflect about how we interact with
computers and software, and in which way the information is presented by a
piece of software. How can a program be intuitive for an user? What behavior
is he expecting, and how will he react? These questions I asked myself when
implementing the Editor GUI.

And third but not least, the technologies I used within this project are tech-
nologies with a certain perspective for future use. Java, or object-oriented
programming languages in general, are basics for a computer scientist today.
The same applies to XML and XML-based technologies such as JDOM or
XSLT (XSLT I intended to use but abandoned due to a lack of time).

2 Functionality

The functionality of the Editor GUI is to accept information from the user
and store it in an XML structure. The information that has to be treated is
very similar to the information when configuring a network interface in the
configuration panel. The user can configure a computer (in this project mostly
called node) with name, IP Address, Gateway Server, and so on.

A node can have multiple interfaces of different types, an interface can have
multiple connections or, to use the usual name within this project, multiple
bindings (except for the ethernet interface which only has one binding).

5



The following functionality had to be achieved and principles had to be re-
spected:

◦ It has to be clear which interface or binding the user is working on

◦ The input has to be verified upon formal correctness before being saved
to the XML structure

◦ A hint can be displayed to help the user find the correct form

◦ Incorrect inputs can be reset to the last correct value in case the user is
completely lost

◦ Not-needed information (i.e. a binding or an interface) can be hidden
and revealed on demand

◦ Multiple nodes or interfaces can be edited at the same time, facilitating
comparison of input values

◦ Reduce to the max: no unnecessary mouse clicks or dialogue boxes should
yield efficient workflow

Figure 1: Screen shot of the NodeEditor

6



3 Implementation

The code can be structured in two main parts: object-oriented classes and
functional (static) classes. Actually the code of the static classes could be
integrated within an other class, but to me it seems more tidy to group the
code belonging to a common theme in a special class.

My personal goal is to create elegant code. I cannot say I always achieved this,
but it might be that I sometimes preferred an in my eyes ”proper” solution
over a code with better performance.

3.1 EditorComponent Classes

The object-oriented classes rely on one class: the EditorComponent interface
class. This Interface specifies that every panel, text field or combo box used
in the EditorGUI will implement the functions update(), save(), discard(), dis-
cardRed() and add(Component). By unifying the functionality of the different
components, I can care less about whether I work with a panel or a single text
field.

This is an implementation of the structural design pattern ”Composite”. As a
short reminder what the Composite Pattern is about:

Compose objects into tree structures to represent part-whole hier-
archies. Composite lets clients treat individual objects and com-
positions of objects uniformly. [3]

The classes shown in Figure 2 correspond with the following prototypes:

EditorComponent Component
EditorPanel Composite
NodeEditor Composite
EditorTextField Leaf
EditorComboBox Leaf
Configurator Client

3.2 EditorPanel

The EditorPanel extends JPanel and implements the EditorComponent; its
used for all panels in my GUI. This is necessary to make the Composite Pattern
(see Figure 2) work.

7



Figure 2: UML diagram of the EditorComponent interface and its implement-
ing classes.

EditorComponent

update()
save()
discard()
discardRed()
add(Component)

Configurator

EditorPanel

update()
save()
discard()
discardRed()
add(Component)
…

forall e in children
 e.update(); 

NodeEditor

update()
stateChanged()
setFocusTextField()
…

EditorTextField

update()
save()
discard()
discardRed()
…

EditorComboBox

update()
save()
discard()
discardRed()
…

forall e in children
 e.update(); 

EditorMultiTextField

update()
save()
discard()
discardRed()
…

The update() function is called in the stateChanged() function which is
triggered when the user changes the selection; it calls the update() function
within each child EditorComponent. The iteration of update() function is
stopped as soon as a modified input is encountered, and the boolean value
true is returned. The last parent panel, which is always the NodeEditor [3.6],
calls the save() function of all its children if true is return. The save() function
proceeds analogous to the update() function. Figure 3 illustrates a typical call
sequence.

8



Figure 3: Call sequence from NodeEditor to EditorTextField.

stateChanged()

setFocusTextField(null)

NodeEditor

update()

EditorPanel … EditorPanel EditorTextField static InputValidator

update()

go(message, text)

setFocusTextField(this)

focusGained()

focusLost()

checkInput()

save()

…

…

update()
update()

save()

… save()
save()

false

true

setForgroundColor(Color.red)

Besides the functions necessary to implement the Composite Pattern, the Ed-
itorPanel holds the following functions:

◦ Functions to add ”Reset” buttons

◦ Action Listener to catch when a button is hit

◦ Functions to add a ”Collapse” button

◦ Functions to determine a ”collapsible” panel and change the state of it
(i.e. collapse or show)

9



3.3 EditorTextField

The EditorTextField extends JTextField and implements the EditorCompo-
nent interface. The EditorTextField is a ”Leaf” class in the Composite design
pattern (Figure 2).

On creation, it receives an InputValidator [3.8] class field that serves as Input-
Validator pattern, and depending on the pattern a ToolTip string is attributed
(see Figure 4). It receives a Label string which is stored as an instance field
and will be displayed next to the field.

Now once the field gets focus, it registers itself in the NodeEditor class as
”the field having focus” by calling the setFocusTextField() function. This is
necessary because the FocusLostEvent is not triggered if the component gets
unselected in the DrawPanel, and a modified input might be lost.

When a field has focus, there can be two events: either an ActionPer-
formedEvent, or an FocusLostEvent. The ActionPerformedEvent occurs
when the user hits the Enter or Return key; the effect is that the input is
verified and the field changes color according to the verification result; the
focus remains with the current field. (This behaviour could be changed eas-
ily by activating a code line.) The color code for the field is illustrated in
Figure 4: An unmodified field is black. If the value is changed and happens
to be the same value as before the modification, it stays black. If a value is
entered which fails the verification, the field turns red. If the value is correct
but differs from the previous value, it turns green, and the value is written to
the underlying XML.

Figure 4: EditorTextFields change color after modification.

The FocusLostEvent occurs if the Tab key is hit or the focus is transfered
using the mouse. The Effect is the same as with the ActionPerformedEvent;
the data is validated and according to the result the field changes its color.
Additionally, it unregisters in the NodeEditor class.

10



When writing the XML data, there is an issue worth noting: If the input
data is empty, two different situations can occur: either the XML attribute
is necessary, then the value will just be reset to the previously saved (and
therefore correct) value. These text fields have an asterisk next to their name.
Or the XML attribute is optional, which is far more often the case, then it will
be removed.

3.4 EditorMultiTextField

The EditorMultiTextField extends the EditorTextField and inherits most func-
tionality from it directly such as the color feedback of the InputValidator or
the XML treating of not existing nodes. Also the functions update(), save(),
reset() and resetRed() are executed in the superclass.

Figure 5: Different stages of an EditorMultiTextField

1. EditorMultiTextField with only one value

2. After adding a separator, the string is not valid any more

3. Completion with a second value

4. The pattern accepts both variants, with or without space after the
comma

The EditorMultiTextField adds an important behaviour though: it can accept
a serie of values with a separator in between, as you can see in Figure 5. The
EditorMultiTextField receives a regular expression string for separation, and a
string for concatenation on creation. This allows the EditorMultiTextField to
accept lists of values which it decodes and stores into separate XML elements.
The pattern strings are defined as constants in the InputValidator [3.8] class.

The functionality is achieved by using an intermediate function to read and
write the XML data. In the EditorTextField, the intermediate functions simply

11



translate the command and return the result. In this class, the functions
contain an algorithm to read or create several elements and set an attribute.

3.5 EditorComboBox

The EditorComboBox extends JComboBox and implements the EditorCom-
ponent interface. It works very similar to the EditorTextField, except that
there is no need for validation of the input data. It also changes color upon
modification (Figure 6) and creates or removes XML attributes if necessary.

The array holding the strings to choose from is a constant in the InputValidator
class and is passed as an argument on creation.

Figure 6: EditorComboBox changes color after modification.

3.6 NodeEditor and DisplayComponent

The NodeEditor class extends the EditorPanel class. It is instantiated in the
Configurator class’ load() function (see Appendix C). The DisplayComponent
class is a purely static class which provides functionality for the NodeEditor
class. Actually the code could be merged in one class, but in order to improve
legibility and comprehensibility it has been separated.

The NodeEditor receives the ChangeEvents from the Configurator class when
a node, interface or binding is selected or unselected in the Draw Panel. It
maintains a Hash Map to keep track of the currently selected panels.

The inherited update() function to iterate the child components is overridden
and replaced by a slightly modified function which calls the save() function

12



when receiving true from one of its children instead of returning it (see Figure
3).

For the description of the setFocusTextField() function see section 3.3 Editor-
TextField.

Now to speak of the DisplayComponent class: this is where the detail
work is done and all the EditorPanels, EditorTextFields or ComboBoxes and
Buttons get instantiated. The functions are ordered hierarchically, actually
a pure functional top-down approach. The entry point is the DisplayCompo-
nent() function which is called from the Editor Node on a change Event. This
function creates a first panel including a frame and then checks the XML for
certain criteria via static functions of the ElementType [3.7] class. After de-
tecting what kind of component it is treating, it calls the appropriate function.
This next function adds certain input fields and again checks what other com-
ponents exist in the XML it has received, and calls other follow-up functions
again.

To illustrate the functionality of the DisplayComponent class, let me show
you some simplified code excerpts: In Figure 7 is the code of the DisplayCompo-
nent() function. It receives an XML element as argument, and then analyzes
it. Lets say the XML is a node thus it calls the displayNode() function on line
2 with the element as argument again.

Figure 7: Simplified code of the DisplayComponent class: displayComponent()
and displayNode()

1 displayComponent(baseElement){
2 if (isNode(baseElement)) displayNode(baseElement);
3 else if (isWlan(baseElement)) displayWlan(baseElement);
4 else if (...)
5 }
6 displayNode(baseElement) {
7 EditorTextField hostnameField = new EditorTextField(...);
8 fieldPanel.add(hostnameField);
9 labelPanel.add(hostnameField.getJLabel());
10 List wlanList = baseElement.getChildren(Wlan);
11 Iterator wlanListIter = wlanList.iterator();
12 while (wlanListIter.hasNext()) {
13 displayWlan((Element) wlanListIter.next());
14 }
15 }

13



The displayNode() function then creates an EditorTextField (line 7) which will
hold the hostname, adds the field (line 8) and its label (line 8) to the respective
panels, and looks for further components in the XML (line 10). As long as
the list has elements (line 12), it will call the displayWlan() function with the
corresponding child element as argument (line 13).

3.7 Static Class: ElementType

In this class, all the functionality for the XML treatment is grouped. In a first
part the strings corresponding to the names of XML elements and attributes
are defined as constants (final static). In a second part, there are functions to
check whether a given element or string is of a certain kind.

The motivation to group this together in a separate class as constants is that
if once in the future the name of an element or an attribute is changed (which
actually shouldn’t but nevertheless is perfectly possible) then the only place
you have to modify the code is in this file. All other classes doing XML
treatment rely on this class.

3.8 Static Class: InputValidator

This class contains the functionality needed to check the input of the Editor-
TextFields [3.3] and to define the values for the EditorComboBox [3.5].

If you look at the code, it might at first be a little confusing why some constants
are defined in this class, and others are defined in the ElementType class. But
if you look a little closer you can soon see that this class has nothing to do
with the XML structure but only with the datatypes of the attributes.

For most of the datatypes, such as IPv4 address or MAC address, there is a
regular expression given in the XML Schema
$PROJECT-ROOT$/java/res/base types.xsd. But for some datatypes, native
XML datatypes could be used. These types and their definition can be found
on the web under [4].

The regular expression (pattern) for verification of the string type and the
NMTOKEN type has been taken from there. For the pattern of unsignedLong
and integer I had to improvise a little. According to the W3C:

[Definition:] integer is derived from decimal by fixing the value of
fractionDigits to be 0. This results in the standard mathematical

14



concept of the integer numbers. The value space of integer is the
infinite set {...,-2,-1,0,1,2,...}.
integer has a lexical representation consisting of a finite-length
sequence of decimal digits (#x30-#x39) with an optional leading
sign. If the sign is omitted, ”+” is assumed. For example: -1, 0,
12678967543233, +100000. [4]

Let me put it in my own words: it is an arbitrary integer, optionally preceded
by ’-’ or ’+’. The regular expression to this was not that hard:

either: 0
or: a number not beginning with 0
or: ’+’ or ’-’ followed by a number not beginning with 0

”0|[1 − 9][0 − 9] ∗ |([+]|[\−])[1 − 9][0 − 9] ∗ ”

The verification of the unsigned long was more tricky: it has a scope of 0 to
(264−1), which is bigger than any number Java can handle: in Java, only ”Long”
exists, scope −263 to (263 − 1), but no ”unsignedLong”. Therefore it could not
be parsed into a Long as a verification. Instead I chose to approximate the
value of (264 − 1) = 18′446′744′073′709′551′615.

either: 0
or: a 1-digit to 19-digit number not beginning with digit 0
or: a 20-digit number beginning with digit 1 and followed

by a digit which is smaller than 8

”0|[1 − 9][0 − 9]{0, 18}|1[0 − 7][0 − 9]{18}”

This pattern allows me to express numbers from 0 to
17’999’999’999’999’999’999
instead of parsing it as Long and hitting the ceiling at
9’223’372’036’854’775’807

4 Conclusion

The following is a list of suggestions, in what way the GUI, the Analyser or
Verinec as whole could be changed.

15



4.1 Verinec General Issues

”Show Parent”

When beginning this project, I wanted the the parent element being accessible
from within the configuration panel, i.e when selecting an interface there is a
button ”Show Parent”. After I saw a little how the Analyser class worked I soon
had to abandon this idea: When the selection is changed, the NwComponent
that is transferred has no reference to its parent Component. Though this
functionality entails quite a lot of work, it would definitely be an item on my
wish list.

4.2 Future Editor GUI Development

Add ...

When using Verinec on my iBook, I had some troubles to add new interfaces
to a node. Apple’s PowerBooks or iBooks do not have any right mouse button
next to the track pad, to get a context menu the user can press the CTRL-key
as a modifier key. This doesn’t work with Java applications if they do not
intentionally feature this behaviour. Therefore it was planned to add a button
to the NodeEditor [3.6] which gives the user the same functionality as a right
mouse click does.

Maybe it could be implemented by adding a button which on click presents
the context menu as if the user pressed the right mouse button on the corre-
sponding component.

NodeEditorPanel position

Although experimenting a lot with setSize(), setPosition() and different Lay-
out Managers I was unable to prevent the NodeEditorPanel from centering
vertically. This doesn’t cripple its functionality, but it would be nicer if it
would stay aligned on top all the time.

XSLT Validator And ToolTip

A thing which I would have liked quite a lot is the implementation of an
XSL transformation sheet which gets the regular expression pattern from the
nodes.xsd into a Java file. The same could be done with the ToolTip which
could also be stored in the XML schema file (additionally to the xs:documentation
tag).

16



Configuring Services

And not to leave the assignment incomplete I will comment on the config-
uration of services. I agreed with my tutor and my professor that creating
configuration panels for different services would exceed my bachelor thesis.
But sure it would be handy to configure a firewall, DNS server and so on
directly from within the Configurator panel.

4.3 Personal Closing Words

Personally I have liked the work on the project a lot. In the beginning it was
hard because the project was difficult to set up correctly. But as soon as I
went to get help from my tutor it worked, it was a personal problem that I
didn’t seek help early enough.

Once I got started with programming, there was a long dry spell until I was
able to see the grapes of my labour, for example the Composite design pattern
in the EditorComponent classes [3.1] had to be implemented completely before
it could execute.

I want to thank my tutor David Buchmann for supporting me with ideas
and help when I was stuck with my code and struck with blindness for my
errors. I think I have learned a lot about programming with object-oriented
programming languages and the respective concepts.

17



A Bibliography

References

[1] Telecommunications, Networks & Security Research Group, 2005
Verinec Translation Module (Verified Network Configuration - Working
Paper), state September 18, 2005
by David Buchmann and Dominik Jungo
http://diuf.unifr.ch/tns/projects/verinec/verinec report.pdf

[2] Telecommunications, Networks & Security Research Group, 2005
Editor GUI Bachelor Thesis Assignment
by David Buchmann
http://diuf.unifr.ch/tns/

[3] Addison Wesley Professional Computing Series, 1994
Design Patterns: Elements of Reusable Object-Oriented Software
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

[4] W3 Consortium, 2001
XML Schema Part 2: Datatypes
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

B Licensing

The code, including this documentation, is published under GNU general pub-
lic license. Author is Damian Vogel.

You are free to use this software, modify, use or redistribute the
source code or parts of it.

To read a full-length version of this license please visit:
http://www.gnu.org/licenses/gpl.html

18

http://diuf.unifr.ch/tns/projects/verinec/verinec_report.pdf
http://diuf.unifr.ch/tns/cms/index.php?option=com_content&task=view&id=86&Itemid=48
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes
http://www.gnu.org/licenses/gpl.html


C Code modification in the Configurator class

The following lines of code are suggested to be added to the public void
load(Analyser parent) function in the Configurator class in order to load the
Editor GUI:

public void load(Analyser parent) throws VerinecException {
(...)

Component xmlData = new DefaultComponentEditor(analyser);
JScrollPane xmlScrollPanel = new JScrollPane(xmlData);

NodeEditor nodeEditor = new NodeEditor(analyser);
JScrollPane nodeEditorScrollPanel = new JScrollPane(nodeEditor);

analyser.setTopComponent(nodeEditorScrollPanel);
analyser.setBottomComponent(xmlScrollPanel);

(...)
}

19


	Introduction
	Environment
	Assignment
	Personal Motivation

	Functionality
	Implementation
	EditorComponent Classes
	EditorPanel
	EditorTextField
	EditorMultiTextField
	EditorComboBox
	NodeEditor and DisplayComponent
	Static Class: ElementType
	Static Class: InputValidator

	Conclusion
	Verinec General Issues
	Future Editor GUI Development
	Personal Closing Words

	Bibliography
	Licensing
	Code modification in the Configurator class

