
VeriNeC Firewall

MSc Thesis: A Firewall Implementation for the VeriNeC

Simulator

Department of Informatics
University of Fribourg, Switzerland

Author:
Jason Hug

Rue de Lausanne 51
1700 Fribourg

jason.hug@unifr.ch

Referent: Prof. Dr. Ulrich Ultes-Nitsche
Assistants: Dominik Jungo, David Buchmann

20th October 2006

Abstract

In this report the implementation of a firewall for the Verified Network Configuration (Ver-
iNeC) Simulator is discussed. The firewall simulates real life counterparts with a Packet-
Filter and Stateful Inspection. Both components, which are based upon the IPTables
implementation, were successfully integrated within the VeriNeC Simulator. How this
was accomplished is described in this master thesis.

Keywords: VeriNeC, Packet Filter, IPTables, Stateful Inspection, Network Simula-
tion

Contents

Contents 2

1 Introduction 4
1.1 Objective and Overview . 4

2 The VeriNeC Project 6
2.1 Introduction . 6
2.2 Architecture . 6

2.2.1 Network Definition . 6
2.2.2 Verification . 8
2.2.3 Distribution . 11

3 Firewall 12
3.1 Introduction . 12
3.2 IPTables . 13
3.3 Packet Filter . 14

3.3.1 Rules . 15
3.3.2 Actions . 16
3.3.3 Policies . 16
3.3.4 Example . 17

3.4 Stateful Inspection . 18
3.4.1 Conntrack . 18
3.4.2 Match-State . 23

3.5 VeriNeC’s Packet Filter Schema . 24

4 Implementation 26
4.1 Introduction . 26
4.2 Packet-Filter . 26

4.2.1 Rules . 29
4.2.2 Actions . 32
4.2.3 Policies . 33

4.3 Stateful Inspection . 35
4.3.1 The State Table . 36
4.3.2 Workflow . 37
4.3.3 Timeout . 39
4.3.4 Extending . 40
4.3.5 Shortcomings . 42

2

CONTENTS 3

4.4 Logging . 42

5 Conclusion 44

Bibliography 46

A Acronyms 48

B Verinec Schemas 50
B.1 Network Topology Schema from network.xsd 50
B.2 Node Schema from node.xsd . 51
B.3 Packet-Filter Schema from node.xsd . 52

B.3.1 packet-filters . 52
B.3.2 default-policy . 53
B.3.3 packet-filter-rule . 54
B.3.4 packet-match-list . 55
B.3.5 packet-action-list . 57

B.4 Extendended Events Schema from events.xsd 57

C Examples 61
C.1 Properties file for Stateful Inspection . 61
C.2 Network Definition . 61

C.2.1 Complete Network Definition . 61

Chapter 1

Introduction

Network administration can be a tedious job in a heterogeneous network-environment.
Each computer, router, firewall and service needs to be configured in a safe and correct
manner. Not only does the first configuration have to be manually deployed on each net-
work component but also altering the settings on one component may imply the alteration
of all other components in the network. As one can see, managing such a given system
can be complicated and very time consuming, especially when one considers how networks
grow larger and larger each day and each network component needs to be configured with
its own administration tool.

The project VeriNeC [1] aims to simplify network configuration and administration.
The project is funded by the Swiss National Science Foundation, and has been in de-
velopment since September 2004. VeriNeC achieves its task with three core modules.
The first module helps the user to either define a new network or gather information
about an already existing network (Network Definition). The second module validates
the correctness of a given network configuration using a Simulator (Verification). And the
third module writes the configuration to each component on the network (Distribution).
The three modules use one unified description of the network topology and component
configuration with the help of eXtensible Markup Language (XML).

1.1 Objective and Overview

In this master thesis the main goal was to introduce a packet-filtering firewall into
the VeriNeC Simulator. VeriNeC contains a module which simulates the behavior of
a network configuration. The simulation result is then stored in a well defined XML
document. Different services and protocols have been implemented into the Simulator,
but a packet-filtering firewall was missing. The task of this thesis was to implement
a packet-filtering firewall, configurable through VeriNeC, and to extend the output log
file in such a way that the firewall events are logged. The firewall would have to be
implemented in such a way that it depicts real life counterparts that are used in todays
computer networks.
The motivation to include a firewall component into the Simulator includes the fact that
most networks (private or corporate) these days have some sort of packet-filtering firewall
present. This may be a dedicated hardware firewall component or one which is installed
as a software product on a local machine. When validating the abstract definition of
a network, one needs to consider the fact of such a configured component which might

4

1.1. OBJECTIVE AND OVERVIEW 5

hinder network communication (or let unwanted communication pass through) before
distributing the configuration onto the real network. Without these tests the network
may then not work as expected or even worse open security holes for unwanted guests.

The task at hand was completed over a time frame of eight months. This report, which
is a part of the master thesis, describes the process of achieving the integration of a
packet-filtering firewall into the existing VeriNeC Simulator.
This report can be divided into four parts. The first part gives a short overview of
VeriNeC and its components. The second part describes the fundamentals of a packet-
filtering firewall. The third part describes how the firewall was implemented and lists all
of it’s features. And the last part concludes this report.

Chapter 2

The VeriNeC Project

2.1 Introduction

As networks grow larger and larger the job of administrating them gets harder and
harder. Not only does each network component come with its own administration tool
but also configuring all components in such a way that smooth network operation is
guaranteed can be a difficult task. The VeriNeC project’s goal is to introduce a tool
which simplifies network administration.
In this chapter a rough overview of VeriNeC is given. We will look at the project’s
architecture and its features will be discussed briefly.

2.2 Architecture

The core architecture of VeriNeC is composed of three modules. Each module accesses
the setup of a given network through an abstract Network Definition Document which is
stored as an XML document. The idea behind the abstraction is to introduce a common
language which expresses the network topology and its components configurations. Con-
figuring services is difficult to accomplish due to the heterogeneous attribute of networks.
Each component of the network may be configured in a different fashion depending on
operating system or manufacturer. Their functionality however stays the same. Hence
the idea of introducing this abstraction.

The modules each have a specific task based around the Network Definition Document
which one can see in Figure 2.1. The first module which consists of the Editor and the
Importer is responsible for creating a valid Network Definition Document (see Section
2.2.1). The Verification module (see Section 2.2.2) tests whether the given Network
Definition Document satisfies specific requirements. And the Distribution module (see
Section 2.2.3) is responsible for translating the abstract service configuration into real life
configuration syntax which is then deployed onto the specified system [6].

2.2.1 Network Definition

The Network Definition Document describes the network topology and the configura-
tion of its components (nodes) in an abstract manner. VeriNeC provides tools which help
create such a definition. The Editor can create new Network Definition Documents of a

6

2.2. ARCHITECTURE 7

Figure 2.1: Architecture of VeriNeC [6]

network or may edit already created ones. The Import module creates the Network De-
finition Document based on locally stored configuration files [9] of network components
and makes use of a Network Scanner [8] to determine the topology of the given network.
The topology and the configuration of all nodes are defined in two separate XML docu-
ments. The network topology document is used for documentation and for simulation. It
describes how a Network Interface Card (NIC) is interconnected within the given system.
Listing 2.1 gives an example of two network topologies. The first one named ’intranet’
consists of three nodes which are connected with each other. The second network named
’extranet’ consits of two interconnected nodes. The corresponding XML Schema can be
found in Appendix B.1. Furthermore, a complete Network Definition example is provided
in Appendix C.2.1.� �

1 <networks>
2 <network name="intranet">
3 <connected binding="1.1.335"/>
4 <connected binding="1.1.184"/>
5 <connected binding="1.1.193"/>
6 </network>
7 <network name="extranet">
8 <connected binding="1.1.237"/>
9 <connected binding="1.1.034"/>

10 </network>
11 </networks>� �

Listing 2.1: Network Topology Example [2]

The configuration of all nodes is also described in an XML document. A node may
represent a workstation, server, switch, router or hardware firewall. As well as describing
the physical configuration of the node (e.g. its NIC), the relation to each connected
network is also specified. Further, services running on the node are also described here. At
the time of writing, VeriNeC has implemented the following services, which the Simulator

8 CHAPTER 2. THE VERINEC PROJECT

does not yet consider:

• Routing

• Domain Name System (DNS)

• Dynamic Host Configuration Protocol (DHCP)

• Packet-Filters (Service which has been implemented in the MSc project described
in this thesis.)

Listing 2.2 shows an example of a configuration of one node. The node is config-
ured with one Ethernet NIC which owns two Internet Protocol (IP) addresses with their
corresponding DNS servers and gateways. Further in this example no service has been
configured. The corresponding XML Schema can be reviewed in Appendix B.2� �

1 <vn:node hostname="diufpc55">
2 <vn:hardware>
3 <vn : e the rne t name="GBit Connection" hwaddress="00:10:ab:12:ff:23"

>
4 <vn :e thernet−binding name="eth0" id="1.1.355">
5 <vn:nw id="i1" address="192.168.0.1" subnet="255.255.0.0"
6 gateway="192.168.0.24" type="ip">
7 <vn:nw−dns se rve r ip="192.168.0.254" />
8 <vn:nw−dns se rve r ip="192.168.0.253" />
9 </vn:nw>

10 <vn:nw id="i2" address="134.21.9.48" type="ip" />
11 </ vn :e thernet−binding>
12 </ vn : e the rne t>
13 </vn:hardware>
14
15 <vn : s e r v i c e s>
16 <vn : rout ing />
17 <vn:dns />
18 <vn:dhcp />
19 <vn:packet− f i l t e r s />
20 </ vn : s e r v i c e s>
21 </vn:node>� �

Listing 2.2: Node Configuration Example [2]

2.2.2 Verification

In this section we will primarily look at the Simulator which is part of the Verification
step. The Verification technique will not be discussed here but can be read about in [3].
The role of the Simulator is to analyze network behavior and increase one’s confidence
in the correctness of the configured nodes before distribution. To accomplish this, a
framework based on Discrete-Event Modeling and Simulation in Java (DESMO-J) [20]
was used to test the network configuration. The Simulator builds a virtual network with
virtual nodes from the abstract Network Definition Document. Each node is connected

2.2. ARCHITECTURE 9

over one or several NICs to one or several virtual networks. Each node contains layers
[3] which offer network services. The layer architecture is related to the one described in
[11]. The basic idea behind this approach is that each layer offers a network service to
the above layer. Network protocols (i.e Transport Control Protocol (TCP) or IP) then
implement the services. Figure 2.2 shows an example node in the Simulator with its
corresponding services.

Figure 2.2: Node in the VeriNeC Simulator [2]

The network is configured through the Network Definition Document. When instanti-
ating the Simulator, the framework instantiates the network with its nodes and connects
each node to the network. Depending on how the nodes were configured in the Network
Definition Document the corresponding layers and services are also instantiated. Further,
the Simulator needs some sort of input to start the simulation. Each event may send,
receive drop or route a packet, launch or finish an application [3]. An event may also
trigger another event.
The simulator’s framework schedules all Input Events and triggers them at the specified
time. During the simulation all events are logged into a log file which is also XML based.
Listing 2.4 shows an example output of a finished simulation run triggered from the In-
put Events from Listing 2.3. As stated above, scheduled events may trigger other events,
therefore root elements are initial input events whereas child elements are triggered events
caused by a parent event [3]. In this example a client would like to access the web page
test.html. This event triggers another event which does a DNS lookup which associates
the domain name diuflx02 to its IP address. This process triggers another event which

10 CHAPTER 2. THE VERINEC PROJECT

creates a User Datagram Protocol (UDP) packet which will be sent over the virtual net-
work. Of course this triggers another event since all the layers of the node have to be
traversed until a data frame actually is sent to the target node.� �

1 <events>
2 <event time="1" node="diuflx01" l a y e r="5" s e r v i c e="application" id="

unique1">
3 <app l i c a t i on program="wget" parameters="http://diuflx02/test.html"

type="launch"/>
4 </ event>
5 <event time="2" node="diufpc55" l a y e r="5" s e r v i c e="application" id="

unique2">
6 <app l i c a t i on program="wget" parameters="http://diuflx02/test.html"

type="launch"/>
7 </ event>
8 </ events>� �

Listing 2.3: Example of an Input Events File [3]

� �
1 <events>
2 <event time="0" node="diufpc55" l a y e r="5" s e r v i c e="application" s r c=

"diufpc55" dst="diuflx01" id="unique1">
3 <app l i c a t i on program="wget" parameters="http://diuflx02/test.html"

type="launch"/>
4 <event time="1" node="diufpc55" l a y e r="5" s e r v i c e="application" id=

"unique1">
5 <app l i c a t i on program="dns" type="lookup" parameters="diuflx02"/>
6 <event time="2" node="diufpc55" l a y e r="4" s e r v i c e="udp" id="

unique1" packet id="dns1" s r c="134.21.3.8" dst="134.21.6.8">
7 <udp type="packetsend" s r cpo r t="45401" dstpor t="53"/>
8 <event time="2" node="diufpc55" l a y e r="3" s e r v i c e="ip" id="

unique1" packet id="dns2" s r c="134.21.3.8" dst="134.21.6.8"
i n t e r f a c e="slkjadsmf">

9 <ip type="send" t t l="255" pro to co l="17"/>
10 . . .
11 </ events>� �

Listing 2.4: A logfile of a HTTP client causing a DNS lookup [2]

Figure 2.3 recapitulates of what we have seen from the Simulator up to this point.
The Network Definition Document and some Input Events are needed so that network
behavior can be simulated and logged to the Log File.

The later Verification step involves the evaluation of the Simulator’s Log File to
find unwanted network behavior. Unwanted network behavior could, for example, arise
through misconfiguration of the firewall, which leads to unwanted traffic being possible
on the tested network. To achieve this, semantic tests on the content of the Log File [5]
are performed. These tests link certain unwanted network behaviors to configurations
within the Network Definition Document [4], so that the user may remedy the malformed
configurations.

2.2. ARCHITECTURE 11

Figure 2.3: Architecture of the VeriNeC Simulator [2]

2.2.3 Distribution

After creating a network setup in abstract form and thoroughly testing it, it is time
to distribute the configuration to all physical network components that are part of the
defined network. As already stated in the introduction to this report, doing this by hand
would not only be tedious but also error prone. It is VeriNeC’s goal to provide a tool
which distributes the configuration of each node defined in the Network Definition Doc-
ument automatically. This means, there is a process which has to translate the abstract
definition of a node’s configuration to the specific syntax of the corresponding component.
This is where some problems may arise between specific vendor syntax of component con-
figurations and those specified in the abstract language defined in the Network Definition
Document. Some components may not support everything which can be described by the
abstract XML language. Therefore the distribution of each component´s configuration is
done in three steps [7]:

1. Restriction: Identifies features that are not supported by a certain implementation.

2. Translation: Generate configuration syntax appropriate from the Network Definition
Document for the chosen component.

3. Distribute: Actually configures the component.

This report will not go into further details of how these steps have been implemented.
The reader may consult [6] for further reading. The reader may like to consult [10]
which describes a possible method of remotely configuring a computer1 using the Java
Application Programming Interface (API) for VeriNeC.

1Running under the Windows operating system

Chapter 3

Firewall

3.1 Introduction

The term firewall depicts a wall that is supposed to protect an entity from a fire. To
bring this depiction into network terminology, a firewall’s function is to protect certain
assets that are found on point A from point B. In most cases the ’to be protected’ asset
is found on a Local Area Network (LAN) or on a computer itself. In a more general
term a firewall should protect a private network and its assets from outside intrusion
which could harm or modify the asset [14]. Figure 3.1 shows how the assets of the Trusted
Network which includes Machine A are protected through a firewall system from Machine
B or generally speaking from an Untrusted Network like the Internet. This security is
warranted by controlling the network traffic between the two network parties.

Figure 3.1: Concept of a Network Firewall

Without a firewall, assets found on a Trusted Network would be exposed to network
attacks. Network attacks may manifest themselves in different ways. In general they try
to breach one of the following security concepts [12]:

• Confidentiality: Ensures that information can only be accessed by the party that is

12

3.2. IPTABLES 13

allowed to access it.

• Authentication: Ensures the identity of a party.

• Integrity: Ensures that data is valid and complete.

• Availability: Determines how well a service, running on a network, is accessible.

A firewall is a component which may protect a network from some of these attacks,
namely ensuring availability and confidentiality. Firewalls, however, can not guarantee all
network security aspects [15], hence the need for other products (Antivirus programms,
Intrusion-Detection System (IDS), etc.) which ensure other security aspects.

Firewalls are not standardized. A firewall system summarizes different kinds of tech-
nologies, implementations and areas of usage. All kinds of literature ([11, 13, 14, 15])
of firewall concepts make reference to these used technologies but each vendor has its
own specification of implementing these concepts ([14], p.17). Therefore it was chosen to
study the behavior of one firewall implementation to then later lean on when implement-
ing a firewall for the VeriNeC Simulator. This firewall implementation is called IPTables1.
Even though IPTables is only the user space tool to administrate packet-filtering rules
or Network Address Translation (NAT) rules in a Linux distribution, the name is often
used to reference the whole infrastructure2, which consists of a Packet Filter module,
connection tracking module and a NAT module3.

As we have seen, a firewall is a product which may incorporate many different tech-
nologies and setups to incorporate network security. In this chapter we will have a look
at two concepts of firewall strategies which were implemented for the VeriNeC Simulator
in the MSc project described here. These are Packet Filter and Stateful Inspection. But
before we delve into these two subjects, we will have a look at IPTables’ architecture and
how it handles network traffic. The last section will explain further features of VeriNeC’s
firewall by having a look at its Network Definition schema.

3.2 IPTables

This section will discuss how packets traverse the firewall architecture IPTables. As
of Linux Kernel 2.4.0 packet filtering and NAT were pooled to one concept, which can
be configured with the iptables command. With the help of this tool, rules can be
formulated, with which decisions are made based upon the header-information of each
network packet. These rules are bundled in so called chains. In IPTables some of these
chains are predefined (see Table 3.1). Other chains can be constructed by the user. These
chains are then grouped in tables. The table ‘nat’, for example, contains chains for NAT.
While the table ‘filter’ holds chains which are used for the Packet Filter.

Figure 3.2 shows how a packet traverses the IPTables infrastructure. When a packet
arrives at the network-interface, the rules in the PREROUTING chain of the ‘nat’ table
are consulted. These rules may change destination address and port of an incoming

1IPTables, http://www.netfilter.org/projects/iptables/index.html
2Wikipedia, IPTables, http://en.wikipedia.org/wiki/Network address translation
3There are more modules which can be dynamically loaded into IPTables if needed [16]

http://www.netfilter.org/projects/iptables/index.html
http://en.wikipedia.org/wiki/Network_address_translation

14 CHAPTER 3. FIREWALL

Table Default Chains
nat PREROUTING, OUTPUT, POSTROUTING
filter INPUT, OUTPUT, FORWARD

Table 3.1: Default Chains for IPTables [16]

packet. Next a routing decision is made. If the packet is destined for the machine itself
the rules found in the INPUT chain of the ‘filter’ table are consulted. These rules decide if
the packet is accepted or if it should get dropped. If the packet is accepted it is forwarded
to the destination process running on the machine. Packets that are not destined for the
local machine traverse the FORWARD chain of the ‘filter’ table.

Figure 3.2: Packets traversing IPTables [13]

Packets that are being sent from a local process are checked in the OUTPUT chain
of the ‘filter’ table. If the packet is accepted, the OUTPUT chain of the ‘nat’ table may
alter the destination address and port of the packet. In the end, all outgoing packets
traverse the POSTROUTING chain of the ‘nat’ table where source address and port may
be altered. With this method one can achieve masquerading [13]. All outgoing packets
are manipulated in such a way that the packets seem to come from the firewall. This
method is mostly used to hide the internal network from the Internet, since public IPv4
ranges are becoming more and more scarce as the Internet grows.

3.3 Packet Filter

All firewalls that are used on todays software or hardware driven firewall solutions have
some sort of a packet-filtering module present. Packet filtering is a method to filter out
packets based upon their protocol’s header information. These headers may contain the
following information which firewall rules are based upon:

• Protocol Type (Internet Control Message Protocol (ICMP), UDP, TCP, etc.)

• Source Address (IP)

3.3. PACKET FILTER 15

• Destination Address (IP)

• Source Port (TCP, UDP)

• Destination Port (TCP, UDP)

• Flags (particularly the ones found in TCP)

As already seen in Section 3.2, rules are grouped in chains. For the packet-filtering
module in IPTables the default chains INPUT, OUTPUT and FORWARD are used. In
this section we will have a look at some basic packet-filtering rules and policies which are
specified by IPTables [16]. Please note, however, that this section does not completely
describe IPTables’ funcionality. The most important features, which were later imple-
mented into the Simulator, are shown here. For a complete manual on IPTables, please
consult its manpage [17].

3.3.1 Rules

A rule consists of patterns and an action. Patterns define settings a packet must contain
so that the action is triggered. In this section we will have a look at some basic patterns
one may define in IPTables :

• Protocol (-p [!] protocol4): This pattern defines the type of protocol (TCP,
UDP, ICMP, etc.) a packet must belong to so that the rule applies.

• Address: This pattern defines the source (-s [!] address[/mask]4) or destination
(-d [!] address[/mask]4) address and mask. Therefore the address range is given
in Classless Inter-Domain Routing (CIDR)-notation5.

• Interface: With this pattern one can define from which interface a packet originates
and in which direction it is heading (outgoing: -o [!] interface5, incoming:
-i [!] interface5) for that the rule applies.

Note, that the above and the following patterns can be negated with a !, which would
inverse the pattern-match (i.e. -p ! TCP would apply for all non-TCP packets).

Protocol-Specific Rules

To enhance the depth of the rules, one may define protocol specific patterns which are
used for packets of that protocol. For example: If TCP pattern was selected the rule
can be extended by specifying which source port (e.g. -p TCP --sport 8080) the packet
contains. Some further rules:

• TCP or UDP packets which match a certain source (--sport [!] port[:port]5)
or destination (--dport [!] port[:port]5) port or port-range.

4Corresponding IPTables commands [17]
5Wikipedia on CIDR, http://en.wikipedia.org/wiki/Classless Inter-Domain Routing

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

16 CHAPTER 3. FIREWALL

• TCP-header flags that are set or not ([!] --tcp-flags mask comp5). The first
argument mask defines which flags should be examined. The second argument comp
defines which flags have to be set. For example one may define that a TCP-packet,
where the SYN flag was set and the RST unset (--tcp-flags SYN, RST SYN),
would apply to a rule. The following flags can be examined: SYN, ACK, FIN, RST,
URG, PSH, ALL (all flags) or NONE (no flags).

• Specific ICMP-types (--icmp-type [!] typename5). The typename can be either
specified by its corresponding numeric value or name. Available ICMP types can
be found by typing iptables -p icmp -h in the console of any Unix or Linux
distribution that has IPTables installed.

3.3.2 Actions

If a rule applies to a packet passing through the firewall an action is triggered. These
actions are defined when specifying the rule. The following actions are available in IPT-
ables :

• ACCEPT: The packet is allowed to pass.

• DROP: The packet is blocked.

• RETURN: The current chain seizes to check the packet and returns it to the calling
chain, for further consultation.

• LOG: The packet is logged in the system protocol. One can configure which log
information should be stored (TCP and/or IP header information) and with which
priority (Level). If a log action was defined the chain continues to check the other
rules for packet analysis.

• REJECT: The packet is blocked and an ICMP error message is sent back to sender.
One may specify what kind of message should be sent back to the sender (available
messages: icmp-net-unreachable, icmp-host-unreachable, icmp-port-unreachable
(default), icmp-proto-unreachable, icmp-net-prohibited or icmp-host-prohibited).

If none of the rules applied within a chain it simply returns to the caller, or for default-
chains the policy is executed.

3.3.3 Policies

In IPTables each default chain (INPUT, OUTPUT and FORWARD) has a default
action. These default actions are called policies and apply when no rule in the chain was
satisfied. The following policies apply for the default chains:

• ACCEPT: The packet is allowed to pass.

• DROP: The packet is blocked.

In IPTables self-defined chains do not contain a default policy ([13], p. 289). If no
rule applied in the chain the calling rule is consulted to decide what there is to do with
the packet.
When configuring a firewall one usually sets the default chains’ policies to DROP.

3.3. PACKET FILTER 17

3.3.4 Example

In this Section we will look at an example to see the functionality of a basic Packet
Filter.� �

1 > i p t a b l e s −P INPUT DROP
2 > i p t a b l e s −A INPUT −p TCP −−dport 80 :100 −j ACCEPT
3 > i p t a b l e s −A INPUT −s 192 . 168 . 0 . 0/16 −j REJECT� �

Listing 3.1: Packet Filter Example

Listing 3.1 shows three commands which configures IPTables to do the following:

• The first line tells the Packet Filter´s INPUT chain to use the DROP policy. This
action is executed if none of the rules applied.

• The second line creates the first rule which lets all TCP packets through the firewall,
that have the destination port-range 80-100.

• The third line creates the second rule which drops packets that contain a source
IP address between 192.168.0.1 and 192.168.255.255. It also sends back and ICMP-
message to the sender of the packet stating that the port is unreachable.

When a packet arrives at the firewall, depending on the routing decision and in which
direction the packet is heading, the corresponding chain is selected to check the rules.
Let us assume for this example, that the packet is incoming. This would imply, that the
packet would traverse our defined INPUT chain as shown in Figure 3.3.

Figure 3.3: Packets traversing the INPUT chain

Each rule is checked against the header information of the packet. If for example the
first rule would apply, then its corresponding action (in this case ACCEPT) would be
executed and the rule checking would cease. If the first rule would not apply, then the
second rule is consulted. If the packet applies to the second rule, the packet would be
dropped and an ICMP-message would be sent back to the sender (REJECT action). If
none of the header-information matches against the defined rules, the default policy is
executed and the packet would be dropped. In short: Only TCP-packets that have a
destination port between 80-100 may pass the firewall.

18 CHAPTER 3. FIREWALL

3.4 Stateful Inspection

A common problem with static Packet Filters, is the fact that they do not know in what
state a connection is in. This may cause problems for applications, where it is not known,
beforehand, which TCP port the application will use. The File Transfer Protocol (FTP)
in active mode6 is a good example which shows this problem, since it not only uses one
active TCP connection but two. The first connection is needed to exchange FTP related
commands from client to server, while the second connection is needed for the actual data-
transfer. The second connection is established from the server to the client and always
uses a different TCP port. The client, therefore, would need to configure the Packet
Filter with a whole range of incoming open ports, so that the FTP service could take
place. Hence not only FTP could use these ports but also other unwelcome applications
[15].

To close this gap most firewalls these days have some sort of module present which
makes firewall-decisions based upon the state of a network connection. This is called
Stateful Inspection. The firewall saves all IP based connections in a table and refers to the
saved information when deciding if a packet is allowed to pass or not. One of the greater
advantages of this method, is the fact that one does not need to care about opening
certain ports for response packets, since Stateful Inspection can relate these packets to
an already active connection. This is especially handy for TCP and UDP7 protocols but
may also be used for other low-level protocols based upon their IP-header7 [15].
The table entries of existing connections usually contain information about the source
and destination addresses plus ports, if present. The states can also be determined by
certain header-settings of some protocols. For example, with TCP, certain flags that were
set determine in which state a TCP connection is in.

This Section will have a look at IPTables’ implementation of Stateful Inspection. The
first part will talk about how network connections are tracked within the Linux Kernel,
while the second part will have a look at how this connection tracking can be used within
IPTables.

3.4.1 Conntrack

In Unix based operating systems, connection tracking is done by a special module
within the Kernel. This module is called Conntrack. Conntrack stores all active network
IP-connections’ attributes in a table and provides the gathered information to IPTables,
which can use it to decide whether packets are allowed to pass the firewall or not. The
Conntrack entries are recalculated each time a packet passes the PREROUTING or the
OUTPUT chain of IPTables [16].

Conntrack can also be extended with modules for specific network protocols (TCP,
UDP and ICMP among others). These modules grab specific information out of the
header of a certain protocol, which is then provided to Conntrack. Before we describe
how the modules operate and which information is collected, let us have a look at a typical
Conntrack entry. When Stateful Inspection has been activated within IPTables, the active
IP-connections are stored under /proc/net/ip_conntrack. Listing 3.2 shows a possible

6Wikipedia on FTP, http://en.wikipedia.org/wiki/Ftp
7Even though UDP and IP are connectionless protocols, Conntrack can assign a state to their connec-

tions based upon which packets have been sent from sender to receiver. See page 19 for more information.

http://en.wikipedia.org/wiki/Ftp

3.4. STATEFUL INSPECTION 19

entry that could be found in this file. With this particular entry, we are dealing with
a TCP packet which was sent out with the SYN flag set. This is the initial packet for
the three-way handshake [11], which is used to establish a TCP connection between two
network parties.� �

1 tcp 6 111 SYN SENT s r c =192.168 .217 .129 dst =192.168 .217 .130 spor t
=32774 dport=22 [UNREPLIED] s r c =192.168 .217 .130 dst
=192.168 .217 .129 spor t=22 dport=32774 use=1� �

Listing 3.2: An example Conntrack entry

Each entry´s signification is described in Table 3.2. The first two attributes describe
which protocol the connection uses. The third attribute describes when the entry times
out. If the time out value reaches 0 the connection entry is completely removed from the
table. Each time a packet is seen for a given connection, the time out value is restored to
the default value, which depends on protocol and state. Hence as long as there is traffic
between the two network parties, the entry rests in the table. The fourth attribute tells
us in what protocol specific state the connection is in. Note that Conntrack state names
are different8 to the ones used by the firewall (mentioned in Section 3.4.2). Attributes five
to eight store the packets source and destination addresses and ports. The next attribute
describes if traffic has been seen in both directions. It is this attribute which decides if a
connection can be regarded as ESTABLISHED or NEW by the firewall. Entries 10 - 13
describe what the Conntrack module expects from a reply packet which would belong to
this connection.

Attribute Description
1 tcp Used protocol (in this case TCP)
2 6 Used protocol in decimal coding
3 117 Timeout value in seconds
4 SYN SENT State of the connection within the Conntrack module
5 src=192.168.1.6 Source address of the observed packet
6 dst=192.168.1.9 Destination address of the observed packet
7 sport=32775 Source port of the observed packet
8 dport=22 Destination port of the observed packet
9 [UNREPLIED] Keyword which specifies if return traffic was observed

10 - 13 src, dst, sport, dport Expected source, destination addresses and ports
of a reply packet belonging to this connection

Table 3.2: Conntrack table entry and their meaning.

In the following sections, we will have a look at the different possible Conntrack entries
and what sort of information they gather for selected protocols.

Default Connections

This is a sort of fall back method which Conntrack uses if no specific module is present
for the given packet’s protocol. This may happen when it does not know the protocol or

8This is especially apparent for TCP connections, where the name of the TCP’s connection state is
used. These are described in Section 3.4.1.

20 CHAPTER 3. FIREWALL

how it functions. Basic attributes such as source and destination IP-addresses are stored
and help identify a packet belonging to a connection. The first packet is regarded as NEW
and the first reply packet changes the state of the connection to ESTABLISHED. From
there on all packets are regarded as ESTABLISHED until the connection times out. The
default time out value for Default Connections is 600 seconds.

UDP

UDP is a connectionless protocol. This means it does not need to guarantee that
packets arrive in a certain order or at all. Therefore one would think that such a protocol
would be stateless. We can, however, assign a UDP connection a state. Similar to Default
Connections, described above, the first UDP packet would be considered as NEW. A
reply packet would move the connection’s state to ESTABLISHED. The following traffic
would be considered to be passing an ESTABLISHED connection. Listing 3.3 shows this
situation. The first entry (Line 1) flags the UDP connection as [UNREPLIED]. The second
entry (Line 3) represents the same entry after it has seen a reply packet belonging to
this connection. Note that the timeout value has changed to 180 seconds and that the
[UNREPLIED] attribute has been removed.� �

1 udp 17 20 s r c =192 .168 .1 .2 dst =192 .168 .1 .5 spor t=137 dport=1025 [
UNREPLIED] s r c =192 .168 .1 .5 dst =192 .168 .1 .2 spor t=1025 dport=137
use=1

2
3 udp 17 180 s r c =192 .168 .1 .2 dst =192 .168 .1 .5 spor t=137 dport=1025 s r c

=192 .168 .1 .5 dst =192 .168 .1 .2 spor t=1025 dport=137 [ASSURED] use=1� �
Listing 3.3: An example UDP Conntrack entry

To distinguish UDP entries within Conntrack the following attributes are considered:

• Source and Destination IP-Addresses

• Source and Destination Ports

The default time out value for UDP connections is 180 seconds.

TCP

TCP is a widely used protocol. Unlike the UDP counterpart, which can directly start
sending data, TCP needs to establish a connection before sending any data. The connec-
tion establishment is done with a three way handshake [11]. The first packet is sent from
the client where the SYN flag is set notifying the server that it would like to create a new
connection. If the server is capable of allowing new connections, it replies to the request
with a TCP packet where the SYN and ACK flags are set. The client then acknowledges
the new connection with an ACK packet, and henceforth data can be exchanged. Con-
ntrack follows the handshake and stores each connection state within the table as shown
in Listing 3.4.

3.4. STATEFUL INSPECTION 21

� �
1 tcp 6 117 SYN SENT s r c =192 .168 .1 .2 dst =192 .168 .1 .5 spor t=1032 dport

=80 [UNREPLIED] s r c =192 .168 .1 .5 dst =192 .168 .1 .2 spor t=80 dport
=1032 use=1

2
3 tcp 6 57 SYN RECV sr c =192 .168 .1 .2 dst =192 .168 .1 .5 spor t=1032 dport=80

s r c =192 .168 .1 .5 dst =192 .168 .1 .2 spor t=80 dport=1032 use=1
4
5 tcp 6 431999 ESTABLISHED s r c =192 .168 .1 .2 dst =192 .168 .1 .5 spor t=1032

dport=80 s r c =192 .168 .1 .5 dst =192 .168 .1 .2 spor t=80 dport=1032 [
ASSURED] use=1� �

Listing 3.4: An example TCP Conntrack entry observed by the client.

As already mentioned above, TCP has connection states [19]. While Conntrack keeps
track of each state the connection is in, IPTables is only interested if a connection is in
the NEW or ESTABLISHED state. Therefore Conntrack marks the connection as NEW
after it has seen the first ACK flag (SYN SENT TCP-state). After the SYN/ACK packet
(SYN RCV TCP-state) it changes the state to ESTABLISHED. Figure 3.4 shows how the
client and server Conntrack module see the connections once a certain packet has been
observed. After the client has sent the SYN packet to the server, both Conntrack modules
mark the connection as NEW. Once the server replies with a SYN/ACK it changes is state
to ESTABLISHED. The client makes the transition to the ESTABLISHED state once it
has received the SYN/ACK packet.
In Listing 3.4, the NEW and ESTABLISHED states are never used explicitly, but notice
how in line 1 the [UNREPLIED] flag is set, marking the connection as NEW, and as soon
as reply traffic was observed this flag is removed (as of line 2), and hence the connection
is regarded as ESTABLISHED.

Figure 3.4: IPTables states during the TCP connection establishment [18].

Again opposed to UDP, where the connection can seize the transfer of data at any
time, TCP needs to terminate an active connection. This is done by sending a TCP
packet where the FIN/ACK flags are set to the other communication party. The other
side acknowledges the connection termination with a packet where the ACK flag is set.
Again Conntrack keeps track of the TCP-states at all times, but IPTables would like to
now if a connection is still ESTABLISHED or not. In TCP, a connection that has termi-
nated may still be active, this way it can still receive packets that might have been held
up by congested networks between the communication parties. Therefore the connection
is still considered as ESTABLISHED as can be seen in Figure 3.5.

22 CHAPTER 3. FIREWALL

Figure 3.5: IPTables states during the TCP connection termination [18].

Opposed to the connection timeouts of the other communication protocols discussed
above, TCP timeouts are dependent in which state the connection is in. As already
mentioned, Conntrack keeps track of TCP-states described in [19]. Table 3.3 lists these
timeout values for each TCP-state.

State Value
NONE 1800 seconds (30 minutes)

ESTABLISHED 432000 seconds (5 days)
SYN SENT 120 seconds
SYN RECV 60 seconds
FIN WAIT 120 seconds

TIME WAIT 120 seconds
CLOSE 10 seconds

CLOSE WAIT 43200 seconds (12 hours)
LAST ACK 30 seconds

LISTEN 120 seconds

Table 3.3: Timeout values for each TCP state [16].

ICMP

ICMP packets are mainly used for controlling and error reporting. An ICMP connection
is never regarded as ESTABLISHED since after the reply packet the stream is considered
to be finished [16]. Again the source and destination IP-addresses are used to identify a
connection. Other attributes are stored as well. The type and code attribute describe the
ICMP control message. The id attribute is also used to distinguish ICMP connections.
Therefore a reply message needs to carry the same id number in order to be identified to
the same connection.

Listing 3.5 shows an example ICMP Conntrack entry. For the first entry of the con-
nection the [UNREPLIED] flag has been set. This shows that the connection is in the NEW
state. When a reply packet arrives it is considered to be ESTABLISHED. However, the
ICMP reply packet also signals the end of this connection, since we know for sure that
after an ICMP reply packet there is no more legal traffic. Therefore the entry is removed
from Conntrack. The default time out value for an ICMP connection is 30 seconds.

3.4. STATEFUL INSPECTION 23

� �
1 icmp 1 29 s r c =192.168 .217 .129 dst =192.168 .217 .130 type=8 code=0 id

=33072 packets=3 bytes=252 [UNREPLIED] s r c =192.168 .217 .130 dst
=192.168 .217 .129 type=0 code=0 id =33072 packets=0 bytes=0 mark=0
use=1� �

Listing 3.5: An example ICMP Conntrack entry

Another important part of ICMP messages is that they can be RELATED to other
connections. ICMP may be used to inform a client about unsuccessful UDP or TCP
connection attempts. Therefore the ICMP message should always spawn back to these
connection attempts.

3.4.2 Match-State

In IPTables, packets can be related to tracked connections with four different states.
The firewall’s match-rule, which checks connection states, may be configured for the
following states [16]:

• NEW: This state tells the firewall that the packet has been seen for the first time.
These packets usually arise when a network component is trying to establish a new
network connection.

• ESTABLISHED: This state has seen network traffic in both directions. A connec-
tion arrives in this state after the host, which sent out a packet to another host, has
received a reply packet. This would imply that the firewall would change the state
of the NEW connection to ESTABLISHED after receiving the reply packet. All fol-
lowing packets, that belong to this connection, are then considered ESTABLISHED
until the connection is closed or times out.

• RELATED: A connection is considered RELATED if it belongs to an already exist-
ing connection. This connection will spawn another connection outside of its main
connection. This spawned connection is then considered RELATED. An example
application which uses RELATED connections is FTP. After setting up an initial
connection, which is used to exchange FTP-commands, a data-stream connection
is established between server and client. This second connection would be consid-
ered RELATED by the firewall. Another example of a RELATED packet would be
ICMP error messages. Connection attempts between client and server using TCP
or UDP may sometimes fail. In such a case ICMP is used to inform of this situation,
and the packet is considered RELATED to the already existing connection attempt.

• INVALID: A packet which could not be identified or does not have a state is consid-
ered INVALID. When the Stateful Inspection table runs out of memory, it cannot
create new entries. Therefore packets that would be considered NEW cannot be
inserted into the table. Hence the packet does not have a state. ICMP messages
could also be considered INVALID, if they do not respond to any known connections
(RELATED).

Listing 3.6 shows a typical firewall setting for Stateful Inspection. All outbound traffic
is allowed, whereas inbound traffic is only allowed if a connection was opened beforehand.

24 CHAPTER 3. FIREWALL

Lines 1-2 set the policy of the incoming and outgoing default chains (INPUT, OUTPUT)
to DROP. Line three states that packets, that are outbound (OUTPUT chain), may pass
if they already belong to an existing connection (ESTABLISHED) or if the packet has
been seen for the first time (NEW). Line four only allows incoming (INPUT chain) packets
to pass, if they actually belong to an existing connection (ESTABLISHED). Therefore in
this setup an intruder from the outside could not open a new connection.� �

1 > i p t a b l e s −P INPUT DROP
2 > i p t a b l e s −P OUTPUT DROP
3 > i p t a b l e s −A OUTPUT −m sta t e −−s t a t e NEW,ESTABLISHED −j ACCEPT
4 > i p t a b l e s −A INPUT −m sta t e −−s t a t e ESTABLISHED −j ACCEPT� �

Listing 3.6: An example ICMP Conntrack entry

3.5 VeriNeC’s Packet Filter Schema

Another part on which VeriNeC’s firewall implementation leans upon, is the Packet
Filter service of the Network Definition schema. At the beginning of this thesis the
schema already existed and therefore was a good reference point to extract what main
features the VeriNeC firewall implementation should have. This section will have a look
at the most important elements defined within the Network Definition schema for the
Packet Filter service, which were not already covered by IPTables. The complete schema
can be found in Appendix B.2.

The root element for the Packet Filter service is called packet-filters. This element
has three attributes called global-out, global-in and forward. These attributes refer-
ence a Packet Filter chain which will be consulted by default for incoming, outgoing or for-
warded packets. The element has two child elements called interface-filter-mappings

and packet-filter-chain. The interface-filter-mappings element is used to over-
ride the default chains defined by the packet-filters attributes. It has a child element
called if-map which consists of three attributes. The first two attributes (interface
and direction) state preconditions which have to be met so that the default chain is
overridden for the chain defined by the third attribute (chain). The interface attribute
is a reference (IDREF) to an ethernet-binding element. It specifies for which inter-
face the chain is consulted. The second attribute direction, specifies in which direction
the packet is heading. The third attribute chain then references the chain, which is to
be consulted. More information about the interface-filter-mappings element can be
read about in Section 4.2.3.
The packet-filter-chain element has two attributes called name and id. The id at-
tribute identifies the chain and therefore must be non-ambiguous. This element has two
child elements called default-policy and packet-filter-rule. Each chain has one
default policy and consists of a set of rules. Section 4.2.3 describes the default-policy

element’s functionality in more detail.
The packet-filter-rule element has an id attribute so that the rule can be identi-
fied. It has a set of match patterns that are specified within the packet-match-list

child element. The packet-action-list child element lists all possible actions a rule
can execute. Only one action can be associated with a rule, with the log action element

3.5. VERINEC’S PACKET FILTER SCHEMA 25

being an exception. This element can be defined coeval with another action. All possi-
ble match-patterns specified in the packet-match-list element are discussed in Section
4.2.1. All possible actions described within the packet-action-list are described in
Section 4.2.2.

Chapter 4

Implementation

4.1 Introduction

The firewall was implemented within the VeriNeC Simulator. To achieve this, the
functionality of a firewall had to be added to the Simulator’s routines. Moreover the
Simulator’s logging capability had to be modified, so it would log the newly triggered
firewall events.

To add firewall routines to the VeriNeC Simulator, the already existing Simulator was
extended. The Simulator was implemented using the DESMO-J framework [20] and Java
1.4. The firewall itself, however, is a module which is nearly independent of the DESMO-
J framework. The only component that needs the framework is Stateful Inspection (see
Section 4.3) which makes use of the Simulator’s time. Another part of the Simulator that
needed to be extended, was the event logging, which will be discussed in section 4.4.

As already mentioned in section 3.1 the VeriNeC firewall implementation leans heavily
on IPTables. Some aspects of IPTables have been left out, however. Most noteworthy
is IPTables’ NAT feature which was not considered when implementing the VeriNeC
Simulator ’s firewall. Many other IPTables’ rules and patterns were not included in this
implementation since the Network Definition schema did not consider these. This schema
is another part on which VeriNeC’s firewall implementation leans upon. At the beginning
of this thesis the schema already existed and therefore was a good reference point to
extract the main features for VeriNeC’s firewall implementation. In this chapter we will
have a look at how these features were implemented. We will see that some parts of
the firewall implementation look similar to IPTables implementation and other parts are
features that were introduced by the Network Definition schema, which contradict to
IPTables specification.

4.2 Packet-Filter

The Packet-Filter has a similar architecture as the XML-schema of the Network Defi-
nition Document (see B.3) for the packet-filters element. All packet-filtering relevant
classes and packages can be found within the verinec.netsim.firewall package.

The Packet-Filter can be instantiated with the Firewall class. To successfully instan-
tiate the firewall in the Simulation, the Network Definition Document must be passed
to the constructor. This document holds all configuration parameters for the firewall.

26

4.2. PACKET-FILTER 27

Figure 4.1: General Archiecture of VeriNeC’s Firewall implementation

The Firewall class constructor checks if a packet-filter service was specified within
the Network Definition Document and passes the child element to the PacketFilters con-
structor. Even if no packet-filters service was specified, the firewall constructs three
default chains (INPUT, OUTPUT and FORWARD) which have the ACCEPT default
policy and no rules. This way each node will have an active firewall within the simu-
lation, even though the real-life counterpart may not have such a service running. For
this occasion the PacketFilters class has two constructors, where the second one is used
to instantiate the three default chains, when no packet-filters service was specified.
The first one is used if the packet-filters service was defined within the Network
Definition Document. The first PacketFilters constructor needs the Network Definition
Document and the host name of the node which was determined by the Firewall class.
It then checks if default chains were set within the packet-filters element’s attributes
(global-in, global-out and forward), and sets them accordingly. If no chain refer-
ence was specified, a default chain will be initialized, with the ACCEPT policy and
containing no rules, which will later be referenced to. This way each node’s Packet-Filter
will have three default chains even if none were specified within the packet-filters

element’s attributes. The PacketFilters constructor then checks if a match-state rule
was specified within any of the packet-filter-chain elements. If this would be the
case Stateful Inspection is activated for this node. The constructor also sets up any
interface-filter-mappings accordingly, which will later be referenced to if needed.
The role of interface-filter-mappings element is described in section 4.2.3. The last
action of the constructor is then to initialize each packet-filter-chain child element by
using the PacketFilterChain class’ constructor. The PacketFilterChain constructor also
makes use of the Network Definition Document to initialize the corresponding compo-

28 CHAPTER 4. IMPLEMENTATION

nents, which consist of the default-policy element and a set of packet-filter-rule
child elements. The available configuration options of the DefaultPolicy class is discussed
in section 4.2.3. Each defined packet-filter-rule element is initialized with the Pack-
etFilterRule class’ constructor. This constructor reads out all rule-specific patterns which
were defined in the packet-match-list element and sets the corresponding action de-
fined by the packet-action-list element. The possible pattern-matches are discussed
in section 4.2.1 while the actions are described in section 4.2.2.

The IFirewall interface holds all necessary methods to interact with the firewall after it
has been instantiated. The most important method is evalPacket(), which decides if the
packet is allowed to pass the firewall or not. This method will return the corresponding ac-
tion (IPacketAction), with which the Simulator can call the method excecuteAction().
By calling this method, each returned action will then act accordingly and either send
the packet on its way or block it within the simulation.

Figure 4.2: Firewall placement within the Node’s network Layers

The firewall itself is nested in the Data Link Layer (as shown in Figure 4.2) within
VeriNeC’s Simulator. After the Data Link Layer has processed a packet it consults the
firewall to check if it is allowed to pass or not. This is done with the evalPacket()

method, which needs to be provided with further information. The firewall is not aware
of any network activity, therefore it needs to know in which direction the packet is heading

4.2. PACKET-FILTER 29

(IN, OUT or FORWARD)1, which NIC the packet came from or is heading to, at what
simulation time the firewall is being consulted, and it needs the Events Log object. The
latter is needed to log the firewall events to the Simulator’s output Log (Figure 2.2,
Section 2.2.2). Logging of firewall events is discussed in Section 4.4.

4.2.1 Rules

As already introduced in section 3.3.1, a Packet-Filter disposes of simple match-rules
to enforce certain actions for a network packet. In VeriNeC these rules can be classified
between simple and protocol specific patterns. The rules are stored in a Vector of Pack-
etFilterRule classes within the PacketFilterChain class. This section will explain each
match-case within VeriNeC.

Simple Rules

Simple rules define the interface through which a packet was received or being sent or
what type of protocol the packet is composed of. The latter is usually followed by other
protocol-specific patterns.

• In-Interface (MatchInInterface2): “Name of an interface via which a packet was
received (only for packets entering the INPUT, FORWARD and PREROUTING
chains). When the ! argument is used before the interface name, the sense is
inverted. If the interface name ends in a +, then any interface which begins with
this name will match. If this option is omitted, any interface name will match” [17].
The implementation actually checks if packet is incoming, however the + statement
is ignored3.

• Out-Interface (MatchOutInterface): “Name of an interface via which a packet is
going to be sent (for packets entering the FORWARD, OUTPUT and POSTROUT-
ING chains). When the ! argument is used before the interface name, the sense is
inverted. If the interface name ends in a +, then any interface which begins with
this name will match. If this option is omitted, any interface name will match”
[17]. The implementation actually checks if the packet is outgoing, however the +

statement is ignored3.

• Media Access Control (MAC) (MatchMac): “It must be of the form XX:XX:XX:XX:
XX:XX. Note that this only makes sense for packets coming from an Ethernet
device and entering the PREROUTING, FORWARD or INPUT chains” [17]. The
implementation actually checks if we are dealing with a correct Ethernet packet.
However, since NAT was not implemented, it only checks if the packet is passing
the FORWARD or INPUT chain.

• Protocol: “The specified protocol can be one of TCP (MatchTcp), UDP (MatchUdp),
ICMP (MatchIcmp) or all. A ! argument before the protocol inverts the test”
[17]. Similar to IPTables the VeriNeC implementation of the Packet-Filter also

1Therefore the Simulator’s Data Link Layer does the Routing Decision as described in Figure 3.2.
2Corresponding Java class name in the implementation.
3The VeriNeC Network Definition schema expects an IDREF expression, making the + statement

obsolete, since the interface name needs to exist.

30 CHAPTER 4. IMPLEMENTATION

matches certain protocols. However, it cannot define a pattern for all protocols
(all). this could be overcome by defining a pattern which checks if the packet
is of type IP (MatchIpv4). This would be equivalent to the IPTables’ statement
iptables -A INPUT -p IP

• Stateful Inspection (MatchState): This match-case will be further discussed in sec-
tion 4.3.

Similar to the ! statement in IPTables, each rule can be negated with the negate attribute
in the corresponding element. So, if for example, the match-tcp element’s attribute
negate would be set to true, the firewall would match to all non-TCP packets.

Protocol Specific Rules

Similar to IPTables, the patterns can be extended to search for protocol specific header
information. In VeriNeC the IP, TCP, UDP and ICMP protocols can be matched in more
detail. Here we will have a look at these protocol-specific match-cases.

MatchIpv4 An IP packet can be checked for the following attributes:

• Source Address Range (MatchSource): Specifies a match for an IP range of the
source address. The range is specified within the match-source element using the
address and length attributes. With these two components the range is specified
in the CIDR4 notation (address/length). For example, a CIDR notation of the
IP range 192.168.1.1 - 192.168.1.255 would be 192.168.1.0/24. The address
range can be negated with the negate attribute. In this case an address outside of
the range specified would match.

• Destination Address Range (MatchDestination): Same as MatchSource except that
in this case the packet’s destination address is being matched.

• Differentiated Service Code Point (DSCP) (MatchDsField): DSCP5 is a field in the
header of IP packets for packet classification purposes. Common IP networks have
no means to distinguish packets that originate from different applications. This
could cause a bottleneck for some applications (i.e. Voice over IP (VoIP)). To
overcome this problem, every IP packet is prioritized by setting the 6 bits within
the Type of Service byte in the IP-header. The first three bits select which class
the packet belongs to and the following three bits set the drop precedence. Within
VeriNeC the fields are set within the match-dsfield element’s attributes dscp and
dscp-class. The rule can be negated with negate attribute of the match-dsfield

element. At the time of writing this thesis, the DSCP field was not yet implemented
by VeriNeC’s Simulator. Therefore, the pattern is ignored by the firewall, and a Java
Log6 entry is created, informing of this situation.

4Addressing scheme for the Internet which allows more efficient allocation of IP addresses than the
old Class A, B, and C address scheme. The address is interpreted in a bitwise prefix-based fashion and
facilitates routing by grouping address ranges block wise. http://en.wikipedia.org/wiki/Classless
Inter-Domain Routing

5Wikipedia on DSCP http://de.wikipedia.org/wiki/DSCP
6Java Logging http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://de.wikipedia.org/wiki/DSCP
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

4.2. PACKET-FILTER 31

• Explicit Congestion Notification (ECN) (MatchIpEcn): ECN is used in TCP/IP
to signal the communication partner of network congestion. In the IP-header the
ECN-Capable Transport (ECT) bit is set to signal the use of ECN. If the bit would
be set this pattern would apply, however at the time of writing this thesis, ECN
was not yet implemented by the Simulator. Therefore the pattern is ignored by the
firewall, and a Java Log entry is created, informing of this situation.

MatchTcp The TCP packet can be checked for the following attributes:

• Source Port Range (MatchSourcePortRange): This rule matches the source port
specified in a TCP packet. The lower part of the port range is defined in the
lo attribute of the match-source-port-range element. While the upper level is
specified with the hi attribute. The rule can be negated with the negate attribute,
in which case packets, that have a source port outside of the specified range, match.

• Destination Port Range (MatchDestinationPortRange): Similar to MatchSource-
PortRange except that the destination port is matched to the port range.

• TCP Flags (MatchTcpFlags): This rule matches the TCP control flags. The follow-
ing flags can be checked: SYN, PSH, URG, RST, FIN and ACK. Each flag represents
an attribute of the match-tcp-flags element. The values that each attribute can
take is either ’on’, ’off’ or ’dontcare’ (default). Therefore, similar to IPTables imple-
mentation, a flag pattern can be specified, which the packet needs to fulfill so that
a match-case is present. The given example in Section 3.3.1 would be specified in
the Network Definition notation as <match-tcp-flags syn=’on’ rst=’off’ />.
This match-rule can also be inverted by setting the negate attribute to true.

• TCP ECN (MatchTcpEcn): As already mentioned before, ECN is used in the
TCP/IP to signal network congestion. In TCP the Congestion Window Received
(CWR) bit can be set, which signals that congestion is taking place. The other bit,
ECN Echo (ECE), acknowledges the congestion. Both flags can be checked in this
pattern. The rule is also invertible by setting the negate attribute to true. How-
ever, when this thesis was written, ECN was not yet implemented by the Simulator.
Therefore the pattern is ignored by the firewall, and a Java Log entry is created,
informing of this situation.

• TCP Option (MatchTcpOption): The TCP options field is an additional header
entry, which may be used to signal further connection settings which are not al-
ready specified by the other header fields. The total length of the option field
must be a multiple of a 32-bit word and is specified by the kind attribute of the
match-tcp-option element. The rule checking can also be inverted by the negate

attribute. At the time of writing this thesis, the TCP-option field was not yet im-
plemented by the Simulator. Therefore the pattern is ignored by the firewall, and a
Java Log entry is created, informing of this situation.

MatchUdp At the time of writing this documentation, the UDP protocol was not yet
implemented by the VeriNeC Simulator. Thus, UDP rules are ignored by this implemen-
tation of the Packet-Filter. For completeness, however, the rules and their meaning will
be explained here. UDP packets can be checked for the following attributes:

32 CHAPTER 4. IMPLEMENTATION

• Source Port Range (MatchSourcePortRange): Same as the MatchSourcePortRange
for TCP packets introduced above, except that in this case the source port is
matched for UDP packets.

• Destination Port Range (MatchDestinationPortRange): Same as the MatchDesti-
nationPortRange for TCP packets introduced above, except that in this case the
destination port is matched for UDP packets.

If an UDP match pattern element (match-udp) was defined within the Network Definition,
a Java Log entry is created informing of this situation and the pattern is ignored.

MatchIcmp At the time of writing this thesis, the ICMP protocol was not yet imple-
mented by the VeriNeC Simulator. Thus, ICMP rules are ignored by this implementation
of the Packet-Filter. For completeness, however, the interpretation of this rule will be
explained here. ICMP packets are usually used for the exchange of error and information
messages. This protocol is never used by network applications (with the exception of the
’ping’ program). In VeriNeC the ICMP message type can either be specified by the type
name or the corresponding code. The type attribute of the match-icmp element defines
the type name while the code attribute represents the ICMP code7. Further, to match
any non-ICMP packets the negate-icmp attribute can be set to true. In addition the
type name (negate-type) or the code (negate-code) can be negated as well. This way,
one could match anything that is ICMP but not with a specific code or type name.

If an ICMP match pattern element (match-icmp) was defined within the Network
Definition, a Java Log entry is created informing of this situation and the pattern is
ignored.

Chain

Similar to IPTables, the rules are stored in a chain. In VeriNeC’s firewall implementa-
tion each rule (PacketFilterRule) is stored in a Vector within the corresponding Packet-
FilterChain object. The rules themselves consist of a match-pattern (PacketMatchList)
and an action (PacketActionList), which is executed if the rule applies. Note that a rule
can only consist of one action, except for the LOG action. This action can always be
specified in conjunction with another action.

4.2.2 Actions

Equal to IPTables implementation, each VeriNeC’s firewall rule is associated with an
action. If all the patterns match within the rule, the corresponding action is executed.
VeriNeC has the following actions:

• ACCEPT: The packet passes the firewall.

• DROP: The packet is blocked.

• REJECT: The packet is blocked and an ICMP-message is returned to the sender.
The ICMP message type can be defined by the type attribute within the reject-action

7Wikipedia,ICMP,http://en.wikipedia.org/wiki/icmp

Wikipedia, ICMP, http://en.wikipedia.org/wiki/icmp

4.2. PACKET-FILTER 33

element. The default type 3 states that the port is unreachable. Other possible types
are: Net unreachable (0), host unreachable (1), protocol unreachable (2)8. Since, at
the time of writing this thesis, ICMP has not yet been implemented by VeriNeC’s
Simulator, the REJECT action simply drops the packet without sending back an
error message. Further a Java Log entry is created, informing of this situation.

• GOSUB: The packet is passed to a referenced chain for checking. The reference is
specified with the goto attribute within the gosub-action element.

• RETURN: The chain does nothing and returns the packet to the calling chain.

• LOG: This action can be used to log firewall events within the firewall itself. This
action has not been implemented, since all firewall events are logged to the Simula-
tor’s Log File anyway. If the log-action element was defined, a Java Log entry is
created, informing of this situation.

In the Network Definition schema, each action element has a count attribute. This
attribute is a relic from IPTables where the count field is used out of statistical reasons.
In this implementation the count attribute is ignored and a Java Log entry is created if
it was set.

4.2.3 Policies

In contrary to IPTables (see 3.3.3), VeriNeC can define policies for non-default chains.
Further differences lie within what type of actions that can be defined. In IPTables only
the ACCEPT and DROP actions can be used as a policy. In VeriNeC, however, one can
define further actions, namely:

• ACCEPT

• DROP

• REJECT

• RETURN

ACCEPT, DROP and REJECT are terminating actions and therefore cause no problems
when a default chain is consulted. The RETURN action, on the other hand, is a non-
terminating action. This would cause a problem if a policy would simply RETURN,
and therefore the Simulator would not know what to do with the packet. However,
the RETURN action can be defined since one can overcome default chains using the
interface-filter-mappings within the firewall’s configuration.
The interface-filter-mappings element allows one user to overrule the default chains
and let another chain process the packet. If no rule in this chain would apply, one could
set RETURN as policy so that the default chain would be consulted for further processing
of the packet. Therefore one must ensure that the default chain´s policy is not RETURN,
otherwise the packet would simply drop and a Java Log entry mentions this unwanted
situation.

8For a complete list of possible ICMP messages consult http://en.wikipedia.org/wiki/ICMP

http://en.wikipedia.org/wiki/ICMP

34 CHAPTER 4. IMPLEMENTATION

� �
1 <vn:packet− f i l t e r s g loba l−in="pfc1" g loba l−out="pfc2">
2 <vn : i n t e r f a c e− f i l t e r −mappings>
3 <vn : i f−map i n t e r f a c e="xyz" chain="pfc3" d i r e c t i o n="in" />
4 </ vn : i n t e r f a c e− f i l t e r −mappings>
5
6 <packet− f i l t e r −chain name="default-in" id="pfc1">
7 <vn :de f au l t−po l i c y>
8 <vn:drop−ac t i on />
9 </ vn :de f au l t−po l i c y>

10 <vn:packet− f i l t e r −r u l e>
11 <vn:packet−match− l i s t>
12 <vn:match−ipv4 />
13 </ vn:packet−match− l i s t>
14 <vn:packet−act ion− l i s t>
15 <vn:accept−ac t i on />
16 </ vn:packet−act ion− l i s t>
17 </ vn:packet− f i l t e r −r u l e>
18 </ vn:packet− f i l t e r −chain>
19
20 <vn:packet− f i l t e r −chain name="default-out" id="pfc2">
21 <vn :de f au l t−po l i c y>
22 <vn:drop−ac t i on />
23 </ vn :de f au l t−po l i c y>
24 <vn:packet− f i l t e r −r u l e>
25 <vn:packet−match− l i s t>
26 <vn:match−ipv4 />
27 </ vn:packet−match− l i s t>
28 <vn:packet−act ion− l i s t>
29 <vn:accept−ac t i on />
30 </ vn:packet−act ion− l i s t>
31 </ vn:packet− f i l t e r −r u l e>
32 </ vn:packet− f i l t e r −chain>
33
34 <vn:packet− f i l t e r −chain name="overruling -chain" id="pfc3">
35 <vn :de f au l t−po l i c y>
36 <vn:return−ac t i on />
37 </ vn :de f au l t−po l i c y>
38 <vn:packet− f i l t e r −r u l e>
39 <vn:packet−match− l i s t>
40 <vn:match−udp/>
41 </ vn:packet−match− l i s t>
42 <vn:packet−act ion− l i s t>
43 <vn:drop−ac t i on />
44 </ vn:packet−act ion− l i s t>
45 </ vn:packet− f i l t e r −r u l e>
46 </ vn:packet− f i l t e r −chain>
47 </ vn:packet− f i l t e r s>� �

Listing 4.1: Interface-Filter-Mapping example, which overrules a default chain

4.3. STATEFUL INSPECTION 35

Figure 4.3: Packets traversing the example Packet-Filter from Listing 4.1

An example provided in Listing 4.1 demonstrates this situation. Two default chains
were defined for all incoming (pfc1) and outgoing (pfc2) traffic regardless through which
interface the packets were received. They both accept all IP packets and drop any other
sort of traffic. However, the interface-filter-mappings element (Listing 4.1, lines 3-
5) overrules the incoming default chain ’pfc1’, if the packet is incoming over the ’xyz’
interface, and uses ’pfc3’ instead. In this case, if the packet is of type UDP, it is dropped
and the Packet-Filter seizes consulting chains for this packet. With all other packets, the
RETURN action would get triggered, which would induce the Packet-Filter to consult
the default chain ’pfc1’ for further processing as illustrated in Figure 4.3.

4.3 Stateful Inspection

In Section 3.4, Stateful Inspection was shortly introduced. It was decided that the fire-
wall for the Simulator should also incorporate Stateful Inspection since most firewalls and
routers have such a system running. However, when searching for any good documenta-
tion or system specification, I ran into a few problems. Stateful Inspection is not a defined
standard, and it was quit hard to find any good documentation about it. To make things
worse, most vendors implement Stateful Inspection in their own manner. This could cause
problems when running the simulation for a setting where the ”‘to be configured”’ firewall
component would not react in the same manner as in the VeriNeC Simulation. Since it
was hard to find any vendor specific implementation of sateful inspection, it was chosen to
lean the implementation toward the one used in IPTables. All Stateful Inspection relevant
classes and packages can be found within the verinec.netsim.firewall.util.table

package.

As already mentioned in Section 3.4.1, Unix based operating systems have IPTables

36 CHAPTER 4. IMPLEMENTATION

run in conjunction with a kernel module called Conntrack. This module keeps track of
the states for all active network connections. With this module IPTables may then make
rule-based decision on dropping or letting packets through the firewall based upon these
connection states. This section will explain how Stateful Inspection was realized for the
Simulator. Furthermore, it will go into what was implemented and what shortcomings
are present and how the Stateful Inspection part of the firewall could be extended.

4.3.1 The State Table

The Conntrack module stores the connection information in a table. It was therefore
chosen, for VeriNeC’s firewall implementation, to also store certain connection relevant
information within a table. For this a Java Hash Table9 class was used. A Hash Table
is a construct which associates keys with values (Records). In Java the keys and their
associated entries are objects. The comparison of keys is done with their hash value. This
hash value is calculated by transforming the key object into a hash value using a hash
function (hashCode()). The hash value then represents the index of the table (Bucket)
where the entry object is being stored. Depending on how the hash function calculates
index values, collision may occur. Collision describes the event of two keys which generate
the same hash value, and therefore two Records would reside in the same Bucket creating
a linked list. Figure 4.4 shows such a situation. The first Bucket stores two Records since
both keys generated the same hash value. If this is the case, another method (equals())
is consulted to distinguish the keys. This method actually compares the object’s values
with each other and checks if both objects are an instance of the same class.

Figure 4.4: Hash Table example, showing two Records in one Bucket (Index 1).

The biggest advantage of Hash Tables is their lookup time. They normally offer a
constant lookup time O(1) and in the worst case a lookup time of O(n). Therefore the
tables are mostly used when large amounts of records are being stored10.

9Class Hashtable, http://java.sun.com/j2se/1.4.2/docs/api/java/util/Hashtable.html
10Wikipedia, Hash Table, http://en.wikipedia.org/wiki/Hash table

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Hashtable.html
http://en.wikipedia.org/wiki/Hash_table

4.3. STATEFUL INSPECTION 37

Key

In VeriNeC’s firewall implementation the keys object represent the observed protocol
and consists of selected header information of the protocol’s packet (see Table 4.1). De-
pending on the protocol observed, the following key is used with the corresponding header
information:

• IP (IPKey): This key is used for Default Connections (see Section 3.4.1). This is the
case if the Transport Layer protocol is not recognized. The source and destination
addresses are stored. The hash value is calculated (hashCode()) with the protocols
name (IP), the source address and the destination address. The equals() method
compares the source and destination addresses and checks that both objects are
an instance of the same class. Note that all following keys use this method to
distinguish themselves.

• TCP (TCPKey): Apart from storing the source and destination IP-addresses, the
TCP key also stores source and destination ports to distinguish table entries. The
hashCode() method uses these four components to calculate the hash value.

• UDP (UDPKey): Similar to TCPKey above. This key object has already been
integrated into Stateful Inspection and therefore would be ready once the VeriNeC
Simulator implements UDP.

Protocol Name Source Address Destination Address Port Port
’ip’ IP-Address IP-Address NA NA
’tcp’ IP-Address IP-Address Source Port Destination Port
’udp’ IP-Address IP-Address Source Port Destination Port

Table 4.1: Content of protocol specific keys

Entry

The entry object keeps track of the timeout value and the state in which the connection
resides in. For each protocol it keeps track of different timeout values. Table 4.2 lists the
timeout values for each state of the connection. Notice that the timeout values for TCP
entries rely in which state the TCP connection is in.

4.3.2 Workflow

Within the VeriNeC Simulator, Stateful Inspection works as follows:

• If a match-state rule was defined in a node’s firewall configuration, Stateful Inspec-
tion is activated during the simulation for that node. Otherwise Stateful Inspection
does not log any network traffic.

• If a NEW state was defined within a match-state element, the protocol specific
header information is used to create a key object. The implementation then verifies
if a connection already exists by checking if this key object is already residing in the

38 CHAPTER 4. IMPLEMENTATION

Connection Type State Timeout (Default)
Default Connection (IPKey) NEW, ESTABLISHED, RELATED 6000
UDP Connection (UDPKey) NEW, ESTABLISHED, RELATED 1800

TCP Connection (TCPKey)

NONE 18000
ESTABLISHED 4320000

SYN SENT 1200
SYN RECV 600
FIN WAIT 1200

TIME WAIT 1200
CLOSED 18000
CLOSE 100

CLOSE WAIT 432000
LAST ACK 300

LISTEN 1200

Table 4.2: Content of the entry objects

Hash Table. If this is the case the packet can not be in the NEW state. Otherwise
the packet is considered as NEW. For TCP packets, the SYN flag also needs to be
set so that the packet is considered to be in the NEW state.

• When the ESTABLISHED state was declared, the implementation checks whether
the packet already belongs to an existing table entry. It does this by generating a
key, corresponding to the observed packet, with which it checks if a Record already
exists within the table. If an entry exists then the packet is considered to be in the
ESTABLISHED state. A connection moves to the ESTABLISHED state as soon
as it has seen a reply packet. For TCP packets, however, the first reply packet
needs the SYN and ACK flags set (part of the three-way handshake) so that the
connection moves to the ESTABLISHED state.

• For the INVALID state, the implementation checks if the Hash Table is full. If this
is be the case, the packet is INVALID if it does not already belong to an existing
connection. A packet would also be considered INVALID if it does not contain an
IP-header.

• The RELATED state is not functional in this implementation of the Packet-Filter.
The rule is ignored and a Java Log entry is created informing of this situation.

• After a packet has been accepted by a chain, depending on which state the connec-
tion is in, the corresponding entry is created or updated. This is in contradiction
to IPTables implementation of Stateful Inspection, where Conntrack would update
its table after a packet has traversed in the PREROUTING or the OUTPUT chain
(see Section 3.4.1) only.

Similar to Conntrack’s modules, the implementation stores relevant information of
each protocol and handles each protocol in a different manner. This is especially apparent
for TCP. As already described in Section 3.4.1, a TCP connection is established with the
3-way handshake. Therefore VeriNeC’s firewall implementation considers this procedure

4.3. STATEFUL INSPECTION 39

and actually checks if the correct flags have been set. A TCP packet is only considered
to be in the NEW state when the SYN flag is set. The reply packet needs the SYN and
ACK flag set, to be considered as ESTABLISHED.
The firewall’s state table also stores the actual state of the TCP connection. As can be
seen in Table 4.2, each TCP state holds a different timeout value, therefore it is essential
that Stateful Inspection knows in which state the connection is in. This is done by checking
the state within the used socket11 (FSMSocketImpl class), which is stored in the Transport
Layer of each node.

4.3.3 Timeout

The notion of time is not given within a DESMO-J framework since it is based on
the discrete event simulation paradigm. In such a setting the simulator’s ’time’ simply
increments each time an event was observed. Hence, time does not pass in the traditional
meaning, instead it passes when something happens.

(a) Packets traversing each Node’s Network
Layer scheduled at a specific Event time.

(b) Sequence Diagram of the four Nodes.

Figure 4.5: Example of two Nodes sending a packet simultaneously.

Figure 4.5 shows an example of how the simulation time increments during a run.
Nodes 1-2 are sending a network packet to nodes 3-4 at the same time. For each node
the packet is passed from Network Layer to Network Layer, where the needed header
information is added to the packet. After each Network Layer has processed the packet
it schedules the Simulator to handle the packet in the next layer at the next event time.
Therefore the event time increases each time the packet passes a layer within a node.

11The Simulator uses Java sockets to interface to network applications [3]

40 CHAPTER 4. IMPLEMENTATION

Notice, however, that each of the first two nodes handle a packet within a layer at the
same event time. The packets of each node is processed at the Application Layer at
simulation time 1. The next layer is then scheduled to process the packet at simulation
time 2 and so forth. The Physical Layer simulates a delay which occurs in the physical
network connection. Therefore it schedules the receiving ends Data Link Layer to process
the incoming packet with a delay of 2, at simulator time 7.

At this rate, a round trip time for a request-reply packet observed by the firewall12

would be 13. Based upon this fact, the timeout values for the Stateful Inspection entries
had to be adjusted to respect this. A round trip time of a request-reply packet within a real
network is measured in milliseconds and the timeout values within Conntrack are defined
in seconds. Therefore it was decided to base VeriNeC´s timeout values upon Conntrack´s
multiplied by the factor 10. Hence, the assumption is made, that the average latency
within a real network would be 130 milliseconds.
The default timeout values for each protocol and state can be found in Table 4.2.

Configuration Since the default timeout values were defined out of an assumption, it
is possible to alter their values within a Java Properties13 file. The file is stored as XML.
Each protocol’s timeout value is represented as an element. To alter the timeout value,
one can modify the timeout attribute of the corresponding element. The properties file
is called firewall_config.xml and can be found in the data directory of the current
Java working path14. The values stored within this file are valid for all nodes, thus it is
not possible to alter the values for one node only.
Note that if the firewall_config.xml file is malformed or corrupt the default values are
taken and the file is rewritten. When this happens all previously saved values are lost!
An example properties file can be found in Appendix C.1.

The default values are coded within the class of the respective protocol. So for instance,
to alter the default timeout value for UDP, one would have to change the static variable
UDP_TIMEOUT within the UDPKey class.

4.3.4 Extending

It was decided to make Stateful Inspection as expandable as possible. The key used for
a Hash Table entry is based on an extendable architecture as can be seen in Figure 4.6.
Stateful Inspection can be extended by adding specific inspection methods for selected
protocols. The following steps can be taken to extend Stateful Inspection´s functionality.

• Extend Stateful Inspection by protocol.

• The protocol must be a member of the Transport Layer or above.

• Each newly created protocol class must extend the SimpleKey class. The SimpleKey
class implements the ITableKey interface and therefore the following methods would

12Remember that the firewall was placed within the Data Link Layer as described in Section 4.2
13Java Properties, http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html
14This is valid for the current VeriNeC implementation.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html

4.3. STATEFUL INSPECTION 41

need to be implemented: handleNew(), handleEstablished(), handleRelated()
and updateEntry().

• The SimpleKey class already implements the equals() and the hashCode() method,
which are used for the Hashtable lookup. It is recommended however to override
these methods with your own implementation.

• In order to be able to modify the timeout values found within the the Java Properties
file, a static method called initTimouts() has to be created and implemented.
The methods found in the TCPKey or UDPKey classes may serve as an example. Fi-
nally, the call to this method has to be added in the static method loadTimeouts()

found in the SimpleKey class.

• To finally add the new functionality to stateful inspection, the createKey method
within the StatefulInspection class needs to be modified.

Figure 4.6: Architecture of Stateful Inspection´s Keys

42 CHAPTER 4. IMPLEMENTATION

4.3.5 Shortcomings

The current implementation of Stateful Inspection for the VeriNeC firewall has some
shortcomings. First and foremost the RELATED match case is not yet functional. This
state would be used in conjunction with ICMP or FTP protocols. The match case would
take care of related traffic to be able to pass the firewall. It was chosen not to implement
this match-case as of yet, since these protocols have not yet been implemented by the
VeriNeC Simulator.
Further, it is not clear whether the timeout values chosen above are accurate enough to
correctly model a network, where Stateful Inspection firewalls are active. The assumption
taken above, should however be considered as an introductory value that can be modified
as more complex simulation runs are executed and experience is collected. Further, the
properties file allows for a quick modification of these values.
Thirdly not all protocols have been included in this implementation of Stateful Inspection.
The TCP and UDP protocols have been implemented. Other protocols however are
processed with the fall back method Default Connections which tracks IP connections.
More protocols can be added using the method described in Section 4.3.4.

4.4 Logging

Within the simulation, the firewall events are logged to the Simulator’s Log Document,
similar to other events that were triggered by the Input File (see Figure 2.3). Since
the Simulator was extended with a firewall, the Log File had to be adapted. This was
accomplished by adding firewall specific events to the events schema file. The added
specification can be seen in Appendix B.4.� �

1 <event time="2" node="node" l a y e r="2" s e r v i c e="packet-filters" id="75
e4fc:10c80b9024c: -7ff3">

2 < f i r e w a l l type="triggered -action" ac t i on="accept" chainID="pfc4">
3 <packet− f i l t e r −r u l e>
4 <match−ipv4>
5 <match−source negate="false">
6 <iprange ip="192.168.0.0" l ength="16" />
7 </match−source>
8 </match−ipv4>
9 </packet− f i l t e r −r u l e>

10 </ f i r e w a l l>
11 </ event>
12 . . .
13 <event time="5" node="node" l a y e r="2" s e r v i c e="packet-filters" id="75

e4fc:10caf5cf5ce: -7ff0">
14 < f i r e w a l l type="default-policy-action" ac t i on="drop" chainID="pfc1"

/>
15 </ event>� �

Listing 4.2: Example firewall entries in the Simulator’s Log File

Two sorts of firewall events are logged during a simulation run. The triggered-action
and the default-policy-action. Both elements describe which action (action at-

4.4. LOGGING 43

tribute) was executed and which chain (chainID attribute) triggered the action. Rule
details follow the log-entry, if the action was triggered by a matching rule. The action

attribute specifies which action was taken. If a triggered-action was logged then the
action is associated with the logged rule, and therefore was defined within the rule’s
packet-action-list element. For a default-policy-action, the action is associated
with the one defined within the chain’s default-policy element. Note, if no chainID

was specified, then the action was executed by a default chain, which was not defined
within the node’s packet-filters element. As described in Section 4.2, these chains are
initialized if no default INPUT, OUTPUT or FORWARD chains were specified within
the mentioned packet-filters element.

Listing 4.2 shows two example firewall-log entries. The first log entry (lines 1-11) was
triggered by a matching rule (the source IP-address matched to the range specified by
the rule), therefore the rule details are logged as well. The second entry (lines 13-15),
however, executed a chain policy, due to the fact that none of the rules applied.

Chapter 5

Conclusion

The VeriNeC Simulator’s firewall has been implemented in such a way, that it correctly
depicts a real world counterpart firewall in a network. It does basic packet-filtering based
upon the packet’s header information. Further the notion of Stateful Inspection was im-
plemented, which simulates the tracking of network connection states with which firewall
decisions can be based upon.

Stateful Inspection

Stateful Inspection was implemented based upon IPTables. The main drawback of this
proceeding lies within the notion of timeouts. IPTables timeouts are based upon time,
whereas within the simulation the notion of time increments when events occur. There-
fore the timeout values chosen for the simulation have to be taken with a grain of salt,
as it is not clear if the set timeout values actually can simulate a correct run for Stateful
Inspection. Within time and further tests, however, these values can be perfected and set
within the firewall´s Stateful Inspection configuration file (see Section 4.3.3)
Default Connections (IP connection) and TCP connection tracking was implemented for
Stateful Inspection (see Section 4.3.1). Further, UDP connection tracking was also im-
plemented even though the Simulator does not support this protocol as of yet. If further
protocol specific connection tracking would need to be implemented, this would be pos-
sible as described in Section 4.3.4. The NEW, ESTABLISHED and INVALID states can
be checked in this firewall implementation, the RELATED state, however, has not yet
been implemented. Thereto, protocols that could be RELATED to a connection would
need to be implemented within the Simulator (i.E. ICMP or UDP). FTP uses RELATED
connections since two TCP connections are used for an FTP transaction. But, since there
was no way to create a FTP setting within the Simulator to test the correct functionality
of Stateful Inspection, this feature was dropped.

NAT

This version of the firewall implementation comes without any NAT capabilities. It
would be a nice extra feature if at one point the firewall would be extended to consider
such a component. Thereto the Network Definition schema needs to be updated so that
NAT would be configurable, and the firewall would need to be extended so that the NAT
rules would be checked.

44

45

It would also be possible to introduce NAT separately from the firewall implementation.
As already mentioned in Section 4.2 the routing decision would need to be undertaken by
the Data Link Layer. Therefore this layer could consult an independent implementation
of NAT before the firewall is consulted for incoming traffic, and for outgoing traffic the
firewall would be consulted before NAT comes into play (as described in Figure 3.2).

Future Work

The firewall’s functionality is based upon the elements, that were defined within the
Network Definition XML schema (node.xsd). Some of the defined elements could not be
implemented, however. This is due to the fact that some aspects of network simulation
has not yet been implemented by VeriNeC’s Simulator. Once these features would be
added, the following match() method (which correspond to the added protocol / feature)
need to be implemented within these classes:

• MatchDsField (see 4.2.1 DSCP)

• MatchIpEcn (see 4.2.1 ECN for IP)

• MatchTcpEcn (see 4.2.1 ECN for TCP)

• MatchTcpOption (see 4.2.1 TCP Option)

• MatchUdp (see 4.2.1 UDP)

• MatchIcmp (see 4.2.1 ICMP)

Subjective View of the Project

Generally, good experience was collected during the time of this project. I would like
to thank Dominik Jungo and David Buchmann, who always had time and an open ear
for questions or suggestions, or helping me out when I was stuck. I think in time, the
VeriNeC project can yield into a very powerful tool for network administrators, which are
assigned to administer large heterogeneous network setups.

Bibliography

[1] Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche: Verified Network Con-
figuration Project, http://diuf.unifr.ch/tns/projects/verinec/

[2] Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche: The Role of Simula-
tion in a Network Configuration Engineering Approach, Proceedings of the Inter-
national Conference ICICT on Multimedia Services and underlying Network In-
frastructure. ICICT 2004, Cairo, Egypt, December 2004., http://diuf.unifr.ch/
tns/projects/verinec/reports.html

[3] Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche: A Unit Testing Frame-
work for Network Configurations, University of Fribourg, Switzerland

[4] Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche: Classification of network
configuration rules in VeriNeC, University of Fribourg, Switzerland

[5] Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche: Testing of semantic
properties in XML documents, University of Fribourg, Switzerland

[6] David Buchmann: Verinec Translation Module, University of Fribourg, Switzerland

[7] David Buchmann: Automated Configuration Distribution in VeriNeC, ICETE 2005,
Reading, UK October 3-7, 2005., http://diuf.unifr.ch/people/buchmand/2005
ICETE Verinec.pdf

[8] Patrick Aebischer (2005): Network Sniffer, Ein Modul für Verinec, University of
Fribourg, Switzerland

[9] Geraldine Antener (2005): ConfigImporter, A new component for the VeriNeC
project, University of Fribourg, Switzerland

[10] Nadine Zurkinden (2005): WindowsResearch, Implementation of a Translator for
Windows Machines within the Project VeriNeC, University of Fribourg, Switzerland

[11] Andrew S. Tanenbaum (2003): Computer Networks, Forth Edition, Prentice Hall

[12] C. Pfleeger and S. Pfleeger (2003): Security in Computing, 3rd Edition, Prentice
Hall, ISBN: 0130355488

[13] Andreas Lessig (2003): Linux-Firewalls - Ein praktischer Einstieg, O’Reilly, ISBN:
3-89721-357-5, http://www.oreilly.de/german/freebooks/linuxfireger/

46

http://diuf.unifr.ch/tns/projects/verinec/
http://diuf.unifr.ch/tns/projects/verinec/reports.html
http://diuf.unifr.ch/tns/projects/verinec/reports.html
http://diuf.unifr.ch/people/buchmand/2005_ICETE_Verinec.pdf
http://diuf.unifr.ch/people/buchmand/2005_ICETE_Verinec.pdf
http://www.oreilly.de/german/freebooks/linuxfireger/

BIBLIOGRAPHY 47

[14] Norbert Pohlmann (2001): Firewall-Systeme - Sicherheit für Internet und Intranet,
MITP-Verlag Bonn, ISBN: 3-8266-0719-9

[15] Stefan Strobel (1999): Firewalls - Einführung, Praxis, Produkte, dpunkt.verlag Hei-
delberg, ISBN: 3-932588-49-5

[16] Oskar Andreasson (2005): Iptables Tutorial 1.2.0, http://iptables-tutorial.

frozentux.net/iptables-tutorial.html

[17] Herve Eychenne [et al.] (2002): Manpage of Iptables, http://www.manpage.org/

cgi-bin/man/man2html?query=iptables

[18] Rusty Russell (2002): Linux 2.4 Packet Filtering HOWTO, http://www.netfilter.
org/documentation/HOWTO/packet-filtering-HOWTO.html

[19] Gordon McKinney (2004): TCP/IP State Transition Diagram (RFC793) http://

gmckinney.info/resources/TCPIP State Transition Diagram.pdf

[20] Discrete Event Simulation and Modeling in Java, http://www.desmoj.de

http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://www.manpage.org/cgi-bin/man/man2html?query=iptables
http://www.manpage.org/cgi-bin/man/man2html?query=iptables
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://gmckinney.info/resources/TCPIP_State_Transition_Diagram.pdf
http://gmckinney.info/resources/TCPIP_State_Transition_Diagram.pdf
http://www.desmoj.de

Appendix A

Acronyms

VeriNeC Verified Network Configuration

DESMO-J Discrete-Event Modeling and Simulation in Java

API Application Programming Interface

XML eXtensible Markup Language

NIC Network Interface Card

DNS Domain Name System

NAT Network Address Translation

HTTP HyperText Transport Protocol

FTP File Transfer Protocol

DHCP Dynamic Host Configuration Protocol

IP Internet Protocol

TCP Transport Control Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

MAC Media Access Control

LAN Local Area Network

IDS Intrusion-Detection System

DSCP Differentiated Service Code Point

ECN Explicit Congestion Notification

ECT ECN-Capable Transport

CWR Congestion Window Received

48

49

ECE ECN Echo

CIDR Classless Inter-Domain Routing

VoIP Voice over IP

Appendix B

Verinec Schemas

B.1 Network Topology Schema from network.xsd

50

B.2. NODE SCHEMA FROM NODE.XSD 51

B.2 Node Schema from node.xsd

52 APPENDIX B. VERINEC SCHEMAS

B.3 Packet-Filter Schema from node.xsd

B.3.1 packet-filters

B.3. PACKET-FILTER SCHEMA FROM NODE.XSD 53

B.3.2 default-policy

54 APPENDIX B. VERINEC SCHEMAS

B.3.3 packet-filter-rule

B.3. PACKET-FILTER SCHEMA FROM NODE.XSD 55

B.3.4 packet-match-list

56 APPENDIX B. VERINEC SCHEMAS

B.4. EXTENDENDED EVENTS SCHEMA FROM EVENTS.XSD 57

B.3.5 packet-action-list

B.4 Extendended Events Schema from events.xsd

� �
1 <xs : e l ement name="packet-filter-rule">
2 <xs:complexType>
3 <xs : s equence>
4 <xs : e l ement name="match-in-interface" minOccurs="0">
5 <xs:complexType>
6 <x s : a t t r i b u t e r e f="negate"/>
7 <x s : a t t r i b u t e name="interface" type="xs:string"/>
8 </xs:complexType>
9 </ xs : e l ement>

10 <xs : e l ement name="match-out-interface" minOccurs="0">
11 <xs:complexType>

58 APPENDIX B. VERINEC SCHEMAS

12 <x s : a t t r i b u t e r e f="negate"/>
13 <x s : a t t r i b u t e name="interface" type="xs:string"/>
14 </xs:complexType>
15 </ xs : e l ement>
16 <xs : e l ement name="match-mac" minOccurs="0">
17 <xs:complexType>
18 <x s : a t t r i b u t e r e f="negate"/>
19 <x s : a t t r i b u t e name="src" type="xs:string"/>
20 </xs:complexType>
21 </ xs : e l ement>
22 <xs : e l ement r e f="match-ipv4" minOccurs="0"/>
23 <xs : e l ement r e f="match-tcp" minOccurs="0"/>
24 <xs : e l ement r e f="match-udp" minOccurs="0"/>
25 <xs : e l ement name="match-icmp" minOccurs="0">
26 <xs:complexType>
27 <x s : a t t r i b u t e r e f="negate"/>
28 <x s : a t t r i b u t e name="type" type="xs:string" use="required"/>
29 <x s : a t t r i b u t e name="code" use="optional"/>
30 <x s : a t t r i b u t e name="negate-type" type="xs:string" use="optional"

/>
31 <x s : a t t r i b u t e name="negate-code" type="xs:string" use="optional"

/>
32 </xs:complexType>
33 </ xs : e l ement>
34 <xs : e l ement name="match-state" minOccurs="0">
35 <xs:complexType>
36 <x s : a t t r i b u t e r e f="negate"/>
37 <x s : a t t r i b u t e name="value" type="xs:string"/>
38 </xs:complexType>
39 </ xs : e l ement>
40 </ xs : s equence>
41 <x s : a t t r i b u t e name="id" type="xs:string" use="optional"/>
42 </xs:complexType>
43 </ xs : e l ement>
44
45 <xs : e l ement name="match-ipv4">
46 <xs:complexType>
47 <xs : s equence>
48 <xs : e l ement name="match-source" type="iprange" minOccurs="0"/>
49 <xs : e l ement name="match-destination" type="iprange" minOccurs="0"/

>
50 <xs : e l ement name="match-dsfield" minOccurs="0">
51 <xs:complexType>
52 <x s : a t t r i b u t e r e f="negate" use="optional"/>
53 <x s : a t t r i b u t e name="dscp" type="xs:string" use="optional"/>
54 <x s : a t t r i b u t e name="dscp-class" type="xs:string" use="optional"/

>
55 </xs:complexType>
56 </ xs : e l ement>
57 <xs : e l ement name="match-ecnfield" minOccurs="0">

B.4. EXTENDENDED EVENTS SCHEMA FROM EVENTS.XSD 59

58 <xs:complexType>
59 <x s : a t t r i b u t e r e f="negate"/>
60 <x s : a t t r i b u t e name="ect" type="xs:string" use="optional"/>
61 <x s : a t t r i b u t e name="ce" type="xs:string" use="optional"/>
62 </xs:complexType>
63 </ xs : e l ement>
64 </ xs : s equence>
65 <x s : a t t r i b u t e name="fragment" type="xs:string"/>
66 </xs:complexType>
67 </ xs : e l ement>
68
69 <xs : e l ement name="match-tcp">
70 <xs:complexType>
71 <xs : s equence>
72 <xs : e l ement r e f="match-source-port-range" minOccurs="0"/>
73 <xs : e l ement r e f="match-destination -port-range" minOccurs="0"/>
74 <xs : e l ement name="match-tcp-flags" minOccurs="0">
75 <xs:complexType>
76 <x s : a t t r i b u t e name="syn" type="xs:string" use="optional"/>
77 <x s : a t t r i b u t e name="psh" type="xs:string" use="optional"/>
78 <x s : a t t r i b u t e name="urg" type="xs:string" use="optional"/>
79 <x s : a t t r i b u t e name="rst" type="xs:string" use="optional"/>
80 <x s : a t t r i b u t e name="fin" type="xs:string" use="optional"/>
81 <x s : a t t r i b u t e name="ack" type="xs:string" use="optional"/>
82 </xs:complexType>
83 </ xs : e l ement>
84 <xs : e l ement name="match-tcp-ecn" minOccurs="0">
85 <xs:complexType>
86 <x s : a t t r i b u t e name="ece" type="xs:string" use="optional"/>
87 <x s : a t t r i b u t e name="cwr" type="xs:string" use="optional"/>
88 </xs:complexType>
89 </ xs : e l ement>
90 <xs : e l ement name="match-tcp-option" minOccurs="0" maxOccurs="

unbounded">
91 <xs:complexType>
92 <x s : a t t r i b u t e r e f="negate"/>
93 <x s : a t t r i b u t e name="kind" type="xs:string" use="required"/>
94 </xs:complexType>
95 </ xs : e l ement>
96 </ xs : s equence>
97 <x s : a t t r i b u t e r e f="negate"/>
98 </xs:complexType>
99 </ xs : e l ement>

100
101 <xs : e l ement name="match-udp">
102 <xs:complexType>
103 <xs : s equence>
104 <xs : e l ement r e f="match-source-port-range" minOccurs="0"/>
105 <xs : e l ement r e f="match-destination -port-range" minOccurs="0"/>
106 </ xs : s equence>

60 APPENDIX B. VERINEC SCHEMAS

107 <x s : a t t r i b u t e r e f="negate"/>
108 </xs:complexType>
109 </ xs : e l ement>� �

Appendix C

Examples

C.1 Properties file for Stateful Inspection

� �
1 < f i r e w a l l>
2 <s t a t e f u l I n s p e c t i o n>
3 <ip timeout="6000" />
4 <udp timeout="1800" />
5 <tcp>
6 <c l o s e wa i t t imeout="432000" />
7 <c l o s ed timeout="18000" />
8 <c l o s i n g timeout="100" />
9 <e s t ab l i s h e d timeout="4320000" />

10 < f i n wa i t t imeout="1200" />
11 < l a s t a c k timeout="300" />
12 < l i s t e n timeout="1200" />
13 <none timeout="18000" />
14 <syn rcv timeout="600" />
15 <c l o s e s e n t timeout="1200" />
16 <t ime wait timeout="1200" />
17 </ tcp>
18 </ s t a t e f u l I n s p e c t i o n>
19 </ f i r e w a l l>� �

C.2 Network Definition

C.2.1 Complete Network Definition

� �
1 <nodes xmlns="http://diuf.unifr.ch/tns/projects/verinec/node"
2 xmlns : t r="http://diuf.unifr.ch/tns/projects/verinec/translation"
3 xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance"
4 xs i : s chemaLocat ion="http://diuf.unifr.ch/tns/projects/verinec/

node http://diuf.unifr.ch/tns/projects/verinec/node.xsd http:
//diuf.unifr.ch/tns/projects/verinec/translation http://diuf.
unifr.ch/tns/projects/verinec/translation.xsd">

61

62 APPENDIX C. EXAMPLES

5
6
7 <t r : t y p e name=’testtype’ id=’typ01’>
8 < t r : s e r v i c e name=’ethernet’ t r a n s l a t i o n=’linux-redhat’ />
9 < t r : s e r v i c e name=’serial’ t r a n s l a t i o n=’wvdial’ />

10 < t r : s e r v i c e name=’dns’ t r a n s l a t i o n=’bind8’ />
11 < t r : s e r v i c e name=’xy’ t r a n s l a t i o n=’yz’>
12 <t r : t a r g e t name="test">
13 <tr :wmi host="pc23" username="user@domain" />
14 </ t r : t a r g e t>
15 </ t r : s e r v i c e>
16 </ t r : t y p e>
17
18 <va r i ab l e name="session_wep" value="00

:11:22:33:44:55:66:77:88:99:aa:bb" />
19 <va r i ab l e name="session_wep_home" value="

ff:ee:dd:cc:bb:aa:99:88:77:66:55:44" />
20
21 <node hostname="diufpc55">
22 <d e s c r i p t i o n>dominiks b lde r d e l l , auf dem X nicht l u f t</ d e s c r i p t i o n

>
23 <va r i ab l e name="hostname" value="diufpc55" />
24
25 <pre f i x− l i s t s>
26 <pre f i x− l i s t name="trusted" id="pref1">
27 <d e s c r i p t i o n>IP numbers we t ru s t</ d e s c r i p t i o n>
28 <match−p r e f i x address="192.168.0.0" l ength="16" />
29 </ pr e f i x− l i s t>
30
31 <pre f i x− l i s t name="trusted" id="pref2">
32 <d e s c r i p t i o n>A very e v i l hacker net</ d e s c r i p t i o n>
33 <match−p r e f i x address="10.10.30.0" l ength="24" />
34 </ pr e f i x− l i s t>
35 </ pr e f i x− l i s t s>
36
37 <hardware>
38 <e the rne t name="Erste Ethernetkarte" hwaddress="00:10:ab:12:ff:23

">
39 <hint system="pc" s l o t="0" />
40 <hint system="junos" s l o t="0" p i c="0" port="0" />
41 <ethernet−binding name="uni" id="xyz">
42 <nw id="i1" address="192.168.0.1" subnet="255.255.0.0"

gateway="192.168.0.24"
43 type="ip">
44 <nw−dns se rve r ip="192.168.0.254" />
45 <nw−dns se rve r ip="192.168.0.253" />
46 </nw>
47 <nw id="i2" address="134.21.9.48" type="ip" />
48 <nw id="i3" hwaddress="00:10:ab:12:ff:12" address="

134.21.9.49" type="ip" />

C.2. NETWORK DEFINITION 63

49 </ ethernet−binding>
50 </ e the rne t>
51 <wlan name="Wirelesskarte" hwaddress="10:10:ab:12:ff:23">
52 <wlan−binding id="zyx" wepkey="$session_wep$" s e s s i o n="Wireless

">
53 <nw id="i10" address="90.160.84.12" type="ip" />
54 </wlan−binding>
55 <wlan−binding id="yzx" wepkey="$session_wep_home$" s e s s i o n="

Home">
56 <nw id="i20" address="190.60.7.90" type="ip" />
57 </wlan−binding>
58 </wlan>
59 < s e r i a l name="altes 56k-Modem" dev i c enr="2">
60 <s e r i a l −binding id="pxx" phone="0041263008476" l o g i n="dominik"

password="jungo" i d e n t i f i e r="bluewin" pro to co l="ppp">
61 <nw id="i30" address="121.16.80.9" type="ip" />
62 </ s e r i a l −binding>
63 <s e r i a l −binding id="pyy" phone="0041263008476" l o g i n="dominik"

password="jungo" i d e n t i f i e r="uni_RACE" pro to co l="slip">
64 <nw id="i40" type="ip" >
65 <dyn type="dhcp" t imeout="10" r e t r y="5" />
66 </nw>
67 </ s e r i a l −binding>
68 </ s e r i a l>
69 </hardware>
70
71 <s e r v i c e s>
72
73 <rout ing />
74
75 <dns>
76 <va r i ab l e name="toonsdomain" value="toons.foo.net." />
77 <Zone match="$toonsdomain$"
78 type="master"
79 primaryns="ns.$toonsdomain$"
80 adminmail="root.$toonsdomain$"
81 s e r i a l="2004031700"
82 r e f r e s h="10800"
83 r e t r y="3600"
84 exp i r e="604800"
85 min t t l="86400">
86
87 <dnsNS match="$toonsdomain$" t a r g e t="$hostname$.$

toonsdomain$"/>
88
89 <dnsIPRange network="127.0.0">
90 <d e s c r i p t i o n> l o c a l</ d e s c r i p t i o n>
91 <dnsA match="localhost" t a r g e t="1"/>
92 </dnsIPRange>
93

64 APPENDIX C. EXAMPLES

94 <dnsIPRange network="192.168.15">
95 <d e s c r i p t i o n>network</ d e s c r i p t i o n>
96 <dnsA match="$toonsdomain$" t a r g e t="95"/>
97 <dnsA match="$hostname$" t a r g e t="95"/>
98 <dnsA match="sly" t a r g e t="90"/>
99 <dnsA match="ben" t a r g e t="101"/>

100 <dnsA match="roadrunner" t a r g e t="254"/>
101 </dnsIPRange>
102
103 <dnsIPRange network="192.168.30">
104 <d e s c r i p t i o n>network 1</ d e s c r i p t i o n>
105 <dnsA match="$hostname$" t a r g e t="95" />
106 <dnsA match="tigger" t a r g e t="125" />
107 <dnsA match="kanga" t a r g e t="150" />
108 </dnsIPRange>
109
110 <dnsCNAME match="www" t a r g e t="ben" />
111 <dnsCNAME match="ftp" t a r g e t="ben" />
112 <dnsCNAME match="www2" t a r g e t="sly" />
113 <dnsCNAME match="mail" t a r g e t="sly" />
114
115 <dnsMX match="$hostname$.$toonsdomain$" t a r g e t="mail.$

toonsdomain$" p r i o r i t y="10" />
116 </Zone>
117 </dns>
118
119 <dhcp>
120 <option−param param−name="domain-name" i n s t anc e="toons.foo.net"

/>
121 <option−param param−name="domain-name-servers" i n s t anc e="ns1.

toons.foo.net, ns2.toons.foo.net"/>
122 <statement value="server-name diuf-dhcp"/>
123
124 <shared−network param−name="awesso-toons">
125 <statement value="filename boot"/>
126
127 <subnet addr="204.254.239.32" netmask="255.255.255.224">
128 <option−param param−name="domain-name" i n s t anc e="toons.foo.

net"/>
129 <option−param param−name="domain-name-servers" i n s t anc e="ns

.toons.foo.net"/>
130 <statement value="server-name dhcp-server"/>
131 <range begin="204.254.239.42" f i n i s h="204.254.239.62"/>
132 </ subnet>
133 </ shared−network>
134 <subnet addr="204.254.239.64" netmask="255.255.255.224">
135 <option−param param−name="domain-name" i n s t anc e="toons.foo.

net"/>
136 <option−param param−name="domain-name-servers" i n s t anc e="ns.

toons.foo.net"/>

C.2. NETWORK DEFINITION 65

137 <statement value="server-name dhcp-server"/>
138 <range begin="204.254.239.74" f i n i s h="204.254.239.94"/>
139 </ subnet>
140 <group>
141 <statement value="routers 204.254.239.1"/>
142 <host host−name="host1">
143 <host−param card="ethernet" addr="00:c0:c3:cc:0a:8f"/>
144 </ host>
145 <host host−name="host2">
146 <host−param card="ethernet" addr="00:c0:c3:2a:34:f5"/>
147 </ host>
148 </group>
149 </dhcp>
150
151 <packet− f i l t e r s g loba l−in="pfc2" g loba l−out="pfc1">
152 <packet− f i l t e r −chain name="mychain" id="pfc1">
153 <dee fau l t−po l i c y>
154 <drop−ac t i on />
155 </ dee fau l t−po l i c y>
156
157 <packet− f i l t e r −r u l e>
158 <packet−match− l i s t>
159 <match−s t a t e va lue="NEW"/>
160 </packet−match− l i s t>
161 <packet−act ion− l i s t>
162 <accept−ac t i on />
163 </packet−act ion− l i s t>
164 </packet− f i l t e r −r u l e>
165
166 <packet− f i l t e r −r u l e>
167 <packet−match− l i s t>
168 <match−s t a t e va lue="ESTABLISHED"/>
169 </packet−match− l i s t>
170 <packet−act ion− l i s t>
171 <accept−ac t i on />
172 </packet−act ion− l i s t>
173 </packet− f i l t e r −r u l e>
174 </packet− f i l t e r −chain>
175
176 <packet− f i l t e r −chain name="mychain" id="pfc2">
177 <dee fau l t−po l i c y>
178 <drop−ac t i on />
179 </ dee fau l t−po l i c y>
180
181 <packet− f i l t e r −r u l e>
182 <packet−match− l i s t>
183 <match−s t a t e va lue="ESTABLISHED"/>
184 </packet−match− l i s t>
185 <packet−act ion− l i s t>
186 <accept−ac t i on />

66 APPENDIX C. EXAMPLES

187 </packet−act ion− l i s t>
188 </packet− f i l t e r −r u l e>
189 </packet− f i l t e r −chain>
190
191 </packet− f i l t e r s>
192
193 </ s e r v i c e s>
194 </node>
195 </nodes>� �

	Contents
	Introduction
	Objective and Overview

	The VeriNeC Project
	Introduction
	Architecture
	Network Definition
	Verification
	Distribution

	Firewall
	Introduction
	IPTables
	Packet Filter
	Rules
	Actions
	Policies
	Example

	Stateful Inspection
	Conntrack
	Match-State

	VeriNeC's Packet Filter Schema

	Implementation
	Introduction
	Packet-Filter
	Rules
	Actions
	Policies

	Stateful Inspection
	The State Table
	Workflow
	Timeout
	Extending
	Shortcomings

	Logging

	Conclusion
	Bibliography
	Acronyms
	Verinec Schemas
	Network Topology Schema from network.xsd
	Node Schema from node.xsd
	Packet-Filter Schema from node.xsd
	packet-filters
	default-policy
	packet-filter-rule
	packet-match-list
	packet-action-list

	Extendended Events Schema from events.xsd

	Examples
	Properties file for Stateful Inspection
	Network Definition
	Complete Network Definition

