

ConfigImporter
A new component for the

VeriNeC project

Geraldine Antener

Master Thesis in Informatics
University of Fribourg, Switzerland

Supervisors:
Prof. Ulrich Ultes-Nitsche

David Buchmann
Dominik Jungo

telecommunications, networks & security Research Group

Department of Computer Science

July 2005

Abstract

ConfigImporter is part of the VeriNeC project. VeriNeC aims to simplify the complex
task of configuring a network. The core of VeriNeC is an abstract description of a
network and its devices using XML. This abstract configuration can then be tested by
means of simulation and translated to implementation specific configuration data.
ConfigImporter imports the implementation specific configuration settings into the
environment of the VeriNeC project. This paper shows how Linux (more precisely the
distribution Fedora Red Hat) stores network configuration, and how these settings can
be translated into VeriNeC's XML language.

2

Contents

Contents

1 Introduction .. 4
1.1 Overview of this paper ... 4
1.2 Objectives of the project... 5

2 VeriNeC and ConfigImporter ... 6
2.1 VeriNeC.. 6
2.2 Network Definition Schema ... 8
2.3 ConfigImporter ... 9

3 Network Configuration in Linux Red Hat .. 11
3.1 Configuration of network interfaces... 11

3.1.1 Structure of network interface configuration files...................................... 12
3.1.2 Get the information for a <ethernet/> element ... 13

3.2 Configuration of packet filtering firewalls ... 16
3.2.1 The netfilter framework.. 16
3.2.2 The iptables command.. 17
3.2.3 The filter table .. 17
3.2.4 Structure of the iptables output... 18
3.2.5 Get the information for a <packet-filters/> element................................... 20

3.3 The hostname attribute ... 22
3.4 Configuration of Domain Name System .. 23

3.4.1 The named.conf file.. 23
3.4.2 The zone files ... 24
3.4.3 Get the information for a <dns/> element .. 25

4 Java Implementation of ConfigImporter ... 27
4.1 Importer, ImporterDialog, ImporterEnvironment .. 27
4.2 ImportConfigFiles .. 29

4.2.1 ConfigFile... 29
4.3 ImportIptables... 31

4.3.1 Parser .. 31

3

5 ConfigImporter User Guide .. 33
The choice field .. 33
The settings field .. 34
The buttons field... 35
Warnings and Errors... 36

6 Conclusion ... 37

Bibliography.. 38

A Acronyms... 39

B Grammer of iptables output .. 40

C Files of ConfigImporter Demo .. 43

D IniEditor License .. 48

ConfigImporter

4

1 Introduction

Network configuration is a complex task, particularly when the network is
heterogeneous and different implementations of services are used. The
telecommunications, networks & security Research Group of the University of Fribourg
develops a tool to make this task easier: the VeriNeC (Verified Network Configuration)
project. VeriNeC defines an abstract description of a network using XML. With this
definition the abstract network can be simulated and translated to real configuration
data.
For practical use, it should also be possible to do the opposite: import implementations
specific configuration settings into the VeriNeC environment.
This master thesis shows how such an import process can be done for the services
Ethernet card setup and iptables Firewall setup of the Linux distribution Fedora Red
Hat.

1.1 Overview of this paper

This paper is part of my master thesis in Computer Sciences; it describes the research
for and the implementation of ConfigImporter, a new component for VeriNeC. It is
structured as follows:
In this chapter the thesis' objectives are declared which gives an impression of its
process.
A second chapter gives a short introduction to the VeriNeC project and its relations to
ConfigImporter.
The third chapter explains the theoretical background needed to understand how to
import the configuration settings. The configuration files of Red Hat and the VeriNeC's
network definition structure are analysed.
A further chapter shows how ConfigImporter is implemented.
The last chapter gives a conclusion from the master thesis and shows the limits of
ConfigImporter.

ConfigImporter 1. Introduction

5

1.2 Objectives of the project

The final goal of the thesis is to write a new component, a ConfigImporter, for the
VeriNeC project (see Chapter 2). The ConfigImporter imports the configuration of a
Linux machine, i.e. it analyses the existing configuration files of a computer and
translates them into abstract configuration data.
This can be divided into the following objectives:
• Research on configuration files used in Linux systems. Find out which files contain

the needed information, where they are stored in the file system and what syntax
they have.

• Define the structure of these files and research on existing parsers for these formats.
If there is no useful parser, write a custom parser.

• Implement ConfigImporter, a translator to transform the files into the VeriNeC
XML format.

ConfigImporter

6

2 VeriNeC and ConfigImporter

VeriNeC [1] is a project of the telecommunications, networks & security Research
Group of the Department of Computer Science at the University of Fribourg and is
supported by the Swiss National Science Foundation.
VeriNeC aims to simplify the complex task of configuring a network. The core of
VeriNeC is the abstract description of a network; its topology and the configuration of
its components are defined using XML. This abstract configuration can then be tested
by means of simulation, translated to implementation specific configuration data and
distributed on machines. The VeriNeC system is in the progress of being developed. [2]
ConfigImporter is the name of the master thesis at hand, and the working name for a
new component implemented for VeriNeC. ConfigImporter provides VeriNeC with the
ability to import the network configurations of existing systems, that is to analyse its
configuration settings and create the abstract configuration.

2.1 VeriNeC

In a heterogeneous network, with several operating systems, diverse implementations of
services and different ways to set their properties, network configuration can be
complex. With VeriNeC, a system administrator's life becomes easier. The project
centralises his work and unifies the description of configurations.
The base of VeriNeC is its definition of an abstract network description. This is a level
of abstraction and describes a service's functionality without regarding its
implementation. E.g. a packet-filtering firewall can be reduced to lists of tests on
different properties of IP packets.
These network descriptions are defined using XML according to the XML Schema
described in the next section.
Once an abstract network definition is written, it can be distributed to any system for
which a translator exists. Implementations can be replaced and reconfigured without the
slightest effort. This can make the network configuration task more concise.
Before distributing the network settings, they can be tested and verified, this will
augment the security of the system. [3]

ConfigImporter 2. VeriNeC and ConfigImporter

7

VeriNeC consists of different modules: the simulator, the translator and the editor.
Figure 1 shows the correlations.

Figure 1: The modules of VeriNeC

The Simulator module imitates the behaviour of the network defined in XML. It can test
a configuration and give feedback to the network designer.
The Translator module generates the implementation dependant configurations out of an
abstract definition. In a second step, it distributes the generated configuration to the
network devices.
A graphical user interface (GUI), the Editor, supports the user to create an abstract
network. [2, 3] Each of the modules too has a GUI.
The new module Importer contains the Network Sniffer1 to analyse the traffic on a
network, and the ConfigImporter to analyse the concrete setups of a machine. Both
create an abstract definition: Network Sniffer generates it from the recorded traffic,
ConfigImporter form the analysed settings. The two can also complement one another:
first sniff the network, and then import the found nodes.

The network definitions can be stored in and loaded from a repository.

1 Network Sniffer is a Bachelor thesis within the VeriNeC project written by Patrick Aebischer [13]

ConfigImporter 2. VeriNeC and ConfigImporter

8

2.2 Network Definition Schema

The abstract configuration of the network and its nodes in the VeriNeC project are
defined using XML. The structure of these files is defined by the XML schema
network.xsd and node.xsd1.

A network.xml file is created for a network to describe the connections of its nodes'
interface bindings. For each node the definitions of its services are stored in a node.xml
file. The XML document describing a node (that is desktop computer or any other
network element) has two elements: a hardware part and a services part.

Figure 2 shows the structure of the XML schema node.xsd (Not every element is
described in detail.)

node
— prefix-lists [can]
— hardware [must]
— services [must]

hardware
— ethernet [can, repeated]
— wlan [can, repeated]
— serial [can, repeated]

services
— routing [can, repeated]
— dns [can, repeated]
— packet-filters [can, repeated]

ethernet
— name [can]
— hwaddress [can]
— hint [can, repeated]
— ethernet-binding [must]

— id [must]
— name [must]
— nw [must, repeated]

— typ [m]
— id [m]
— address [c]
— subnet [c]
— gateway [c]
— onbbot [c]
— peerdns [c]
— hwaddress [c]
— dyn [c]
— nw-dnsserver [c, r]

packet-filters
— global-in [can]
— global-out [can]
— forward [can]
— packet-filter-chain [c, r]

— name [must]
— id [must]
— default-policy [m]
— packet-filter-rule [m, r]

— packet-match-list [m]
— packet-action-list [m]

Figure 2: Elements defined in node.xsd with their attributes and sub-elements

1 full namespace: http://diuf.unifr.ch/tns/projects/verinec/network, respectively .../node

can, c : that sub-element or attribute can
be set in the element
must, m: that sub-element or attribute has
to be set in the element
repeated, r: that sub-element or attribute
can occur more than once

ConfigImporter 2. VeriNeC and ConfigImporter

9

The hardware element defines all network interfaces (Ethernet, WLAN or serial
interfaces) of the system. Inside an interface element one or more bindings are defined
(only one for Ethernet interfaces). These bindings can be connected in the network.xml
file. Bindings can have several attributes as the name and the hardware address of the
interface.
Also a <hint/> element can be added, to assign explicitly a hardware slot to the abstract
interface. This can be important when the settings are distributed to a machine.

For each <ethernet-binging> element one or more network, <nw/> elements, are
defined. A <nw/> element contains items like the IP-address and DNS server settings. If
an interface has more than one <nw/> element, attributes as the IP-address can be set
twice. So an Ethernet card for example can listen to more then one IP-address while not
being physically connected more than once.

The services element currently supports the services routing, DNS and packet-filtering.
In the routing part route filters, static and dynamic routes can be set.
The <dns/> element defines several <Zone/> elements each defining a DNS Zone.
The <packet-filters/> element contains a list of packet filter chains, each chain defines
packet filter rules.

2.3 ConfigImporter

The idea of ConfigImporter is to import the configurations of running systems into the
VeriNeC environment. This can be of practical use: a system administrator can test the
configurations with VeriNeC's Simulator module, or an established configuration can be
distributed on another system with a different distribution or operating system via the
Translator module of VeriNeC; ConfigImporter extends the possibilities of VeriNeC.

To import means to translate implementation dependent configuration files into XML
data satisfying the VeriNeC's XML schema definition node.xsd.
In this thesis, I implemented the retrieval of the hostname, the Ethernet interfaces and
packet-filter configurations for UNIX-like operating systems. Further I analysed how to
import the DNS configuration settings, this is not yet implemented. Other
configurations are currently ignored.

ConfigImporter is only tested for the Linux distribution Fedora Red Hat.
Linux distributions, that is operating systems containing a Linux kernel plus open
source software, can be divided in groups by the packet management system used.
Fedora Red Hat uses the RPM (Red Hat Package Manager) which is widely used;
distributions as Mandriva Linux, Novell Linux Desktop and SuSE are also of that type.

ConfigImporter 2. VeriNeC and ConfigImporter

10

Other distributions are the distributions of the Debian family like Debian, Ubuntu and
Knoppix and distributions of other types like Slakeware, Gentoo and Linux From
Scratch.
ConfigImporter can be applied for systems using iptables1 (to import the packet-filter
configurations) and for distributions with the same interface configurations file structure
as Fedora Red Hat (to import the Ethernet interfaces settings).

The ConfigImporter is integrated in the VeriNeC's editor module and can be started
from its GUI.

1 ConfigImporter is only tested for the iptables version 1.2.9

ConfigImporter

11

3 Network Configuration in
Linux Red Hat

To set up services at boot time and to maintain the configuration information over
rebooting the system, the Linux distribution Red Hat provides configuration files for its
services. Most of these configuration files are stored in the /etc/sysconfig/ directory.
Besides files to configure the mouse and the keyboard, there are files to set up network
services: [5]
• The information about network configuration is stored in the

/etc/sysconfig/network file.
• A configuration file for each network interface is in the

/etc/sysconfig/network-scripts/ directory.
• Information to set up packet filtering services is located in the

/etc/sysconfig/iptables file.
• The file for the DNS named daemon is the /etc/sysconfig/named.conf file1

Once a service is established, the information stored in the files can often also be
extracted from the corresponding commands. This has the advantage to be distribution
independent, but can have several disadvantages, such as that not all information is
obtained.

3.1 Configuration of network interfaces

To add a machine to a network, its network interface has to be configured. This is done
with the ifconfig command. This command applies to a hardware interface, assigns
an address, sets other parameters, and enables or disables the interface. The command
can also display the current settings of the interfaces. [4]
To bring up the interfaces the corresponding scripts call the ifconfig command with
the parameters given in the configuration files. Changes of the parameters are also saved
there. Under Red Hat Linux the configuration files for network interfaces are in the
/etc/sysconfig/network-scripts/ directory. Each interface has its own file, a ifcfg-
<name> file, where name is the name of the interface. These names are composed of
the type of the interface followed by a number. Types are "eth" for Ethernet, "wlan" for
WLAN or "lo" for the loopback interface and others.

1 But zone, statistic, and cache files are in the /var/named/ directory

ConfigImporter 3. Network Configuration in Linux Red Hat

12

The Ethernet configuration files control the network interface cards (NIC). For example,
the first Ethernet card is configured with the ifcfg-eth0 file. Listing 1 shows such a file.
If there is more than one NIC, there is a further file for each NIC. [5]

In these files parameters as the IP address, the subnet mask and if the corresponding
interface has to be brought up at boot time are stored. Changes of these parameters can
also directly be done in these files.

Listing 1: The configurations file ifcfg-eth0

Special types of interface configuration files are alias files. Alias files can be used for
example to assign more than one IP-address to one hardware network interface.
Interfaces having an alias file can be addressed by their or by the alias name and have
two configuration files.
The alias files are named ifcfg-<if-name>:<alias-value>, for example ifcfg-eth0:0. [5]

The loopback interface is a special, not a real hardware, interface. It corresponds to a
fictitious network. Any data sent through that interface is sent directly to the input
queue of the very computer. The default values in this file shouldn’t be changed. [4]
This interface has also its configuration file (ifcfg-lo) stored in the
/etc/sysconfig/network-scripts/ directory. Although it is not an Ethernet interface it can
be imported by ConfigImporter as an extra option. This is because ifcfg-lo it is an
important file to set up a network and has the same structure as an Ethernet
configuration file.

3.1.1 Structure of network interface configuration files

The network interface configuration files of Red Hat Linux are of a simple style:
INI-style.
INI-style files consist of sections; a section has a section name written in square
brackets, followed by option lines. In option lines a value is assigned to a variable.
Additionally the files can have comment lines and blank lines. [6]
Listing 2 shows that structure and an example of an INI-style file.

ifcfg-eth0
DEVICE=eth0
BOOTPROTO=dhcp
HWADDR=00:06:5B:A9:EF:60
ONBOOT=yes
TYPE=Ethernet

ConfigImporter 3. Network Configuration in Linux Red Hat

13

Listing 2: Structure of INI-style files

The network interface configuration files contain only one section and don’t have
section names. They are therefore only lists of assignments of values to certain options.
Options in these files are among others "DEVICE", "ONBOOT" and "IPADDR". The
File /usr/share/doc/initscripts-<version-number>/sysconfig.txt lists and explains all
configurable parameters of interface configuration files.

See again Listing 1 as an example for an INI-style interface configuration file.

3.1.2 Get the information for a <ethernet/> element

To import the configuration of the network interfaces of a system into the VeriNeC
environment, a <hardware/> XML element has to be defined. According to the XML
Schema node.xsd that element needs different parameters for the different interface
types.
The values needed to generate a <ethernet/> element for a NIC are found in the
configuration file of that interface. Most of the information could also be extracted with
the ifconfig command, but not all (it doesn't tell whether a static IP-address is used or if
it is assigned with DHCP). Thus ConfigImporter uses the information found in the
configuration files.

Each main Ethernet configuration file translates to one <ethernet/> element. And each
<ethernet/> element contains exactly one <ethernet-binding/> element. If an interface
has one or more alias files, the element has an additional <nw/> element for every alias
file. Figure 3 shows what information is used for which part of the element.

Structure of INI-style files:
[section]
var = value

Example:
#List of all users

[Jill]
role = administrator
last_login = 2005-02-03

[Tim]
role = user
last_login = 2003-01-21

ConfigImporter 3. Network Configuration in Linux Red Hat

14

Figure 3: Information to generate a <ethernet/> element

The information to set the attributes of the <nw/> element are found in the configuration
file. The values of the parameters can be used directly or with slight changes as values
of the attributes.
Table 1 is a mapping of the attributes that can or must be set in a <nw/> element of an
interface, and the corresponding names of the parameters in the configuration file.

Content in the <nw/> element Parameter in the configuration file

Attribute "address" IPADDR

Attribute "subnet" NETMASK

Attribute "gateway" GATEWAY

Attribute "onboot" ONBOOT

Attribute "peerdns" PEERDNS

Attribute "hardware" HWADDR

Element <dyn/>
 Attribute "type"
 Attribute "retry"
 Attribute "timeout"

BOOTPROTO
MAXFAIL
RETRYTIMEOUT

Element <nw-dnsserver/>
 Attribute "ip"

DNS1 or DNS2

Attribute "type" test of IPX- Parameters

Table 1: Mapping attributes of <nw/> elements to cofig file parameters

ethernet -> one for each Ethernet interface
— name -> string “Ethernet card” + interface name
— hwaddress -> parameter HWADDR
— hint -> interface number
— ethernet-binding -> exactly one for each <ethernet/> element

— id -> random string
— name -> parameter NAME
— nw -> one for each configuration file belonging to that interface

ConfigImporter 3. Network Configuration in Linux Red Hat

15

The <ethernet/> element can additionally contain the hardware address of the
corresponding network interface card (NIC). The <ethernet-binding/> element has an
name attribute to be set. These values are also found in the configuration files: the
values of HWADDR and NAME (see Figure 3).

Now that all information is known, an <ethernet/> element can be generated. The
<ethernet/> XML element given in Listing 3 is the result of transforming the
configuration file ifcfg-eth0 of Listing 1.

Listing 3: The corresponding <ethernet/> element to the config file ifcfg-eth0

<vn:ethernet name="Ehernet card eth0"
 hwaddress="00:06:5B:A9:EF:60">
 <vn:hint system="pc" slot="0" />
 <vn:ethernet-binding id="if1" name="eth0">
 <vn:nw id="i1" onboot="yes" type="ip">
 <vn:dyn type="dhcp" />
 </vn:nw>
 </vn:ethernet-binding>
</vn:ethernet>

ConfigImporter 3. Network Configuration in Linux Red Hat

16

3.2 Configuration of packet filtering firewalls

Transmitting data on a network is done in packets. The commonly used protocol pair (in
the Transport and Network layers1) is TCP/IPv4 (the Transmission Control Protocol and
the Internet Protocol version 4). Packets in these protocols contain user data and a so
called header which holds extra information how to handle the packet addressing
(routing, get back user data etc.). [7]
This framework allows packet filtering, i.e. analysing the header of an incoming or
outgoing packet and decide what to do with that kind of packet, whether to let pass or to
drop it. This procedure can increase the security and availability of the system. [8]

3.2.1 The netfilter framework

Packet filtering in Linux is done with the netfilter framework. Netfilter is a kernel tool
of the Linux kernel 2.4. Netfilter defines hooks, which are points in the way of a packet
through the kernel. The number and position of the hooks are different for every
protocol: In the IPv4 there are five hooks defined:
• PREROUTING [1]: for all incoming packets before routing.
• POSTROUTING [4]: for all outgoing packets after routing.
• FORWARD [3]: between routing, for packets not destined to and not coming from a

local process.
• INPUT [2]: after routing before entering user-space
• OUTPUT [5]: for packets coming from a local process before routing.

The diagram from Linux Netfilter Hacking HOWTO shows this traversal (Figure 4). [9]

Figure 4: A packet traversing the netfilter system

1 Layers 3 and 4 in the OSI model, see [14] for more information

 --->[1]--->[ROUTE]--->[3]--->[4]--->
 | ^
 | |
 | [ROUTE]
 v |
 [2] [5]
 | ^
 | |
 v |

ConfigImporter 3. Network Configuration in Linux Red Hat

17

3.2.2 The iptables command

The corresponding user-space program to configure the filter settings of the kernel is
iptables. For every hook there is one (or more) chain defined. A chain defines the rules
to check when a packet is on a certain point in its travel through the kernel.
Iptables, as the name suggests, consists of three tables: the filter, the nat and the mangel
table. This tables group the chains into modules, which can by loaded separately.
The filter table contains the INPUT, the OUTPUT and the FORWARD chains. With the
rules set in these chains, the user tries to control the access to local processes, and to
protect the destination network. The rules only filter packets, i.e. they only decide
whether to let pass a packet on the hook or to drop it, they don't alter the packets. [10]
The nat table has three built-in chains: PREROUTING, POSTROUTING and
OUTPUT. The rules in the nat table are doing the network address translation. This can
concern the source or the destination. Forms of NAT are masquerading, port
forwarding, load sharing, and transparent proxying. [11]
In the mangle table are the chains PREROUTING and OUTPUT. These rules are
changing special packet parameters.

The real filtering of packets in its pure meaning is done with the chains of the iptables
filter table. The features of the nat and mangle tables are not supported by the XML
schema node.xsd and ConfigImporter therefore only imports the filter table.

With the iptables command the user can control the settings for filtering network
packets in the chains. Iptables allows creating or deleting rules for a chain, defining the
match conditions for each new rule and also specifying what to do with a matching
packet (i.e. setting the so called target). The whole possibilities of iptables can be found
in its man page.
The settings of the tables can be stored in the /etc/sysconfig/iptables file, the rules set
there will be reapplied at boot time. In Red Hat this file contains primarily a list of the
iptables command lines previously executed without the "iptables" string at the
beginning of each line. [5]

3.2.3 The filter table

Packets enter the filter table when they are on one of the three hooks, INPUT,
OUTPUT, or FORWARD (see The netfilter 3.2.1 above). They enter the corresponding
chain in the table. Each chain is a list of rules. The rules say what to do (target) with a
packet that has certain parameters set in its header. These two parts of a rule are called
target and match list.
The packet gets tested sequentially on every rule of the chain until it matches with one.
Then the defined target of the rule is performed.

ConfigImporter 3. Network Configuration in Linux Red Hat

18

Possible targets are the built-in targets ACCEPT and DROP, special targets as
RETURN, LOG or REJECT or a user-defined chain.
User-defined chains are also lists of rules set by the user and are called by their name.
If a packet reaches the bottom of a user-defined chain without matching any rule, it
returns to the calling chain and continues testing the rules. If it reaches the bottom of a
built-in chain, it is the chains default policy which is executed. Default policies can only
be one of the targets ACCEPT and DROP.
The match list contains tests whether certain bits in the header are set or not. They can
specify the protocol of the packet, the bits of the source and destination address and lots
of other header parameters. [12]

3.2.4 Structure of the iptables output

The /etc/sysconfig/iptables file could be used to generate the abstract configuration. But
the place and format of this file is distribution dependant, the importation would only
work for the Red Hat distribution. Another possibility to get the needed information is
with the iptables command itself. The command line "iptables –Lvn" lists all
chains and rules in the filter table (the table name could also be given explicit, but filter
is default).
Listing 4 shows how the output of this command could look like.

Listing 4: The filter table. Output of the iptables –Lvn command.

[verinec@iiufpc33 sysconfig]$ sudo /sbin/iptables –Lvn

Chain INPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 679K 182M ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0
 0 0 DROP !icmp -- * * 0.0.0.0/0 0.0.0.0/0 state INVALID
 785K 93M eth0_in all -- eth0 * 0.0.0.0/0 0.0.0.0/0
 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0
 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 0 0 DROP !icmp -- * * 0.0.0.0/0 0.0.0.0/0 state INVALID
 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0
 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy DROP 1 packets, 60 bytes)
 pkts bytes target prot opt in out source destination
 679K 182M ACCEPT all -- * lo 0.0.0.0/0 0.0.0.0/0
 0 0 DROP !icmp -- * * 0.0.0.0/0 0.0.0.0/0 state INVALID
 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0
 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain eth0_in (1 references)
 pkts bytes target prot opt in out source destination
 785K 93M ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0

ConfigImporter 3. Network Configuration in Linux Red Hat

19

The syntax of the iptables command output is not specified and there is (therefore) no
useful parser for that format. This makes an analysis of the structure of this string output
necessary.
The syntax of the iptables command output is as follows: (The full result of this analysis
is printed in the Appendix.)

The string output is organised as a list of blocks beginning with the string "chain". Each
chain block consists of a head line, a description line and zero, one ore more rule lines.
The head line contains the name of the chain, and information written in parentheses.
Inside theses brackets there can be the default policy or the number of references to this
chain.

The rest, i.e. the description line and the rule lines are organised as a table, see Listing 5.
The description line words are the labels for the columns, the line contains always these
nine words:
pkts bytes target prot opt in out source destination.
The table can contain one more column, an unlabeled options column.
The rule lines contain values for each column. The minimum of words is eight: the
target column can be empty, the others always contains a word. In the additional options
column, there can be more than one word.
An options cell begins with an option key followed by one or more option value words.
Option keys relevant for ConfigImporter are "DSCP", "ECN", "MAC", "icmp", "tcp",
"udp", "reject-with" and "LOG".

Listing 5: The chain blocks are organised as a table.

The first two columns pkts and bytes are running statistics and thus not relevant to the
project. The third column contains the rule's target. Prot, opt, in, out, source and
destination describe the match list, they specify the set of packets the rule has to match.
The options column can contain additional settings to the target or to parts of the match
list

Chain INPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 679K 182M ACCEPT all -- lo * * *
 0 0 DROP icmp -- * * * * icmp any
 785K 93M eth0_in all -- eth0 * * *
 0 0 LOG all -- * * * * LOG flags 0
 0 0 REJECT all -- * * * * reject-with 3

Option key Options columnDescription line

ConfigImporter 3. Network Configuration in Linux Red Hat

20

As the syntax of the iptables command output is not specified, the above definition is
the result of an intensive research on the iptables command. This was done with the help
of the man page of iptables which describes in detail what can be set in the filter chains:
every possible command changing the configuration of the filter chains was executed.
The settings were then shown with the iptables listing command, and its characteristics
were analysed. This was done for the iptables version 1.2.9. It is thinkable, that for other
versions the output may not be the same, and ConfigImporter therefore will not work
correctly.

3.2.5 Get the information for a <packet-filters/> element

To import the iptables settings into the VeriNeC environment, a <packet-filters/>
element has to be added to the <services/> element.
The <packet-filters/> consists of a <packet-filter-chain/> element for each chain block.
A chain block is only imported if it contains at least one rule line. The global-in, global-
out and forward attributes are set to the corresponding chain1 reference if such a chain
exists.

Figure 5: Information to generate a <packet-filters/> element

The <packet-filter-chain/> element's name attribute is set to the chain name; its id
attribute is a unique string for referencing the chain.
The <default-policy/> element is set to an accept action if the default policy of the chain
(found in parentheses) is ACCEPT and to a drop action if it is DROP. User-defined
chains in iptables can't have a default policy, the <default-policy/> element for such
chains is always set to a return action.
Further the <packet-filter-chain/> element has a <packet-filter-rule/> element for each
rule line. A <packet-filter-rule/> element has always a <packet-match-list/> and a
<packet-action-list/> element.

1 global-out corresponds to the built-in INPUT chain, global-out to OUTPUT and forward to FORWARD

packet-filters
— global-in reference on INPUT chain
— global-out reference on OUTPUT chain
— forward reference on FORWARD chain
— packet-filter-chain one for each chain block

— name chain name
— id set the chain id
— default-policy policy in (), return for user-def. chains
— packet-filter-rule one for each rule line

— packet-match-list the rule line's columns
— packet-action-list its target column

ConfigImporter 3. Network Configuration in Linux Red Hat

21

A <packet-match-list/> element consists of further elements depending on the values in
the match list relevant columns (prot, opt, in, out, source, destination and options). The
following list shows when and how these elements are set:

• match-in-interface, match-out-interface:

o If the in respectively the out cell is not "*", that value is imported.
o The interface given in that cell must exist: a reference on an element in

hardware must be possible otherwise it can't be imported.
o Iptables supports also the matching of interface types (e.g. match all

Ethernet interfaces) this is not possible for VeriNeC
• match-mac:

o If a match mac extension option is set, that value is imported.
• match-ipv4:

o The source und destination cell values are imported (if they are not set to
"0.0.0.0/0").

o The opt column is analysed, the attribute fragment is set to "all", "first"
or "subseq" when the value is "--", "!f" respectively "-f".

o The match extensions dscp and ecn are searched for ip relevant settings.
• match-tcp:

o If prot is "tcp" such an element is created.
o Additional settings in the element are made if there are tcp of ecn

extensions set.
• match-udp:

o If prot is "udp" such an element is created.
o Additional settings in the element are made if there are udp extensions

set.
• match-icmp:

o If prot is "icmp" such an element is created.
o Additional settings in the element are made if there are icmp extensions

set.

Unknown protocol names, other than "tcp", "udp" and "icmp", can not be imported.
Only a few values of the options column are paid regard to (described above). The man
page of iptables describes other so called match extensions as the length, the owner, the
state and the arrival time of a packet. These settings are not imported.

The <packet-action–list/> element is set to the value in the target column. Accepted
values are ACCEPT, DROP, LOG, REJECT, RETURN, and names of user-defined
chains. Other values are not imported, and a noop action is set. A noop action is also set
if no target is printed in the target column.

The <packet-filters/> element to the filter table introduced in Listing 4 is printed in the
Appendix; a reduced version of the INPUT chain is given in Listing 6.

ConfigImporter 3. Network Configuration in Linux Red Hat

22

Listing 6: An imported INPUT chain.

While implementing ConfigImporter and the research on iptables output the XML
schema node.xsd had to be changed slightly. As the abstraction for packet filtering is
derived from ipchains (the antecessor of iptables) the functionalities of iptables had to
be enabled.
• A forward attribute can be set in a <packet-filters> element to allow incoming

packets to directly enter the FORWARD chain.
• It must be possible to set a return action as default policy.
• The negation of items of the match list must be feasible.

Iptables is special in the way interfaces can be matched: each rule can define an
incoming and / or outgoing interface. In other implementations of packet filtering
services a chain is linked to one interface and only packets coming from (or going to)
that interface are filtered with that chain. Instead of the <match-interface/> element now
a <match-in-interface/> and <match-out-interface/> can be set to each rule.

3.3 The hostname attribute

Another thing to set in the resulting XML file is the hostname. The hostname is an
attribute directly set to the <node/> element.
In Linux, the hostname can be set and displayed with the hostname command. The
output of this command is used to import the hostname when importing the settings of
the local machine.
If the configuration of a remote computer is imported, the hostname is already given by
the user to connect to the system.
In the case of importing configurations stored in files, the hostname is set to "test" or
left at the name given by the user.

<vn:packet-filter-chain name="INPUT" id="chain1">
 <vn:default-policy>
 <vn:drop-action />
 </vn:default-policy>
 <vn:packet-filter-rule>
 <vn:packet-match-list />
 <vn:packet-action-list />
 </vn:packet-filter-rule>
 <vn:packet-filter-rule />
 <vn:packet-filter-rule />
 <vn:packet-filter-rule />
 <vn:packet-filter-rule />
</vn:packet-filter-chain>

ConfigImporter 3. Network Configuration in Linux Red Hat

23

3.4 Configuration of Domain Name System

A network needs a tool to resolve human readable hostnames to numerical IP addresses.
This is done with the Domain Name Service (DNS). Basically DNS is a list mapping
hostnames to IP addresses. As there are far too many hosts to be centrally administrated,
the list is organised hierarchically and distributed.
The hierarchy is given by the different parts of the address separated by a dot. Such a
part is called a "zone". Each zone needs to specify its namespace, i.e. to control the
naming of its sub-domains. So each network holds a part of the DNS list.

The default software used to set up DNS for a network under Red Hat is BIND
(Berkeley Internet Name Domain). The name resolution service is done by the named
daemon. Named is configured with the named.conf file in the /etc directory. Zone,
statistic and cache files used by BIND are in the /var/named directory. [5]

3.4.1 The named.conf file

The configuration file for BIND is the named.conf file. This file specifies the role of the
host for each zone. The settings are made in a list of statements. Each statement starts
with a key word, the statement's type. It is followed by a statement name and optionally
by a statement class. The statement's options are listed in braces.
There are a number of different statement types:
• With the include statement, additional files can be included into named.conf.

This is used to break up large files or to hide certain data.
• The options statement assigns values to global options. Options can be the

directory path and other things. If an option is not listed here, its default value is
used. The options can be locally overridden by zones.

• The acl statement is an access control list which matches addresses to a name. By
using the name of the statement this list can be called as an address match list.

• The basic statements in the named.conf file are the zone statements. Each zone
statement defines one zone the host is authoritative for. In these statements, the
location of its zone file and the local value of certain options are set. Listing 7 shows
how a zone statement is structured and gives a typical example.

ConfigImporter 3. Network Configuration in Linux Red Hat

24

Listing 7: The structure of a zone file

Other settings to named can be made with further statements as the controls, the
logging, the server and the key statement. [4]

3.4.2 The zone files

To each zone defined in named.conf a zone file is assigned. A zone file contains two
types of information: parser commands and resource records. The parser commands are
tasks for named to execute as to assign a local value to the $ORIGIN directive which
can then be used in the zone file.

The resource records are forming the database for DNS. There are different types of
resource records. The first resource record to appear in the file is the SOA record
(exactly one per zone). SOA stands for "Start Of Authority". This record holds the name
of the zone, the email address of the administrator and timeout values. See Listing 12
for the form of a SOA record (@ stands for the $ORIGIN directive).

Listing 8: The structure of a SOA record

@ IN SOA <primary-name-server> <hostmaster-email> (
 <serial-number>
 <time-to-refresh>
 <time-to-retry>
 <time-to-expire>
 <minimum-TTL>)

Structure

zone <zone-name> <zone-class> {
 <zone-options>;
 [<zone-options>; ...]
};

Example

zone "localhost" IN {
 type master;
 file "localhost.zone";
 allow-update { none; };
};

ConfigImporter 3. Network Configuration in Linux Red Hat

25

There are further resource record types which are structured similarly. The following
listing shows this form.

Listing 9: The structure of resource records

Address (A) records assign an IP-Address to a hostname. Name Server (NS) records
define the servers that are responsible for the zone. To map an alias name to a real host
names CNAME records can be used. TXT records add text to a host. MX records define
the destination of emails to a certain namespace. MX records have an additional priority
value to show which mail server to prefer to another. There are further resource record
types which are less frequently used and can't be imported to the VeriNeC project.

Each zone has also its reverse name resolution zone file to translate IP addresses in
hostnames. The records found in these files are created automatically by VeriNeC and
therefore need not to be imported.

3.4.3 Get the information for a <dns/> element

To import the DNS settings into the VeriNeC environment for each zone defined in the
named.conf file a <zone/> element has to be added to the <dns/> element (not for the
reverse name resolution zone files).
Figure 6 maps the attributes and sub-elements of a <zone/> element to the parameters
found in the named.conf and the zone files.

<match> IN <record name> <target>

ConfigImporter 3. Network Configuration in Linux Red Hat

26

Figure 6: Mapping of <zone/> element attributes to file parameters

The match attribute has to be set to the name of the zone, the type attribute to the type
value of the zone statement in the named.conf file.
The values for the attributes primaryns, adminmail, serial, refresh, retry, expire and
min_ttl can be found in the SOA record of the zone's file.

The elements <dnsNS/>, <dnsTXT/>, <dnsCNAME/> and <dnsMX/> are created if a
corresponding resource record is given in the zone file, its attributes are set to the
<match> and <target> parameter of that resource respectively. A <dnsIPRange/>
element is created for each group of A records with the same prefix. The network
attribute is set to that prefix value and a <dnsA/> element is created for every A record
of the group.

This is only a general survey of how to import DNS settings into the VeriNeC
environment. A detailed analysis of the structure of the files needs to be done before
implementing a parser and an importer for that service.

zone -> for each zone in named.conf
— match -> zone name (in named.conf)
— type -> type (in named.conf)
— primaryns -> SOA record, primary-name-server
— adminmail -> SOA record, hostmaster-email
— serial -> SOA record, serial-number
— refresh -> SOA record, time-to-refresh
— retry -> SOA record, time-to-retry
— expire -> SOA record, time-to-expire
— min_ttl -> SOA record, minimum-TTL
— dnsNS -> for each NS record
— dnsIPRange -> collects all A records

— network -> prefix of IP-addresses in A records
— dnsA -> for each A record

— dnsTXT -> for each TXT record
— dnsCNAME -> for each CNAME record
— dnsMX -> for each MX record

ConfigImporter

27

4 Java Implementation of
ConfigImporter

ConfigImporter is implemented in Java (J2SE v1.4.2 SDK1) using the Eclipse Platform
3.0. In VeriNeC's GUI the user starts ConfigImporter: a new instance of the
ImporterDialog class is created. This opens a window to communicate with the user and
starts the two importation parts of Ethernet configurations files and iptables settings.

4.1 Importer, ImporterDialog,
ImporterEnvironment

The interface between VeriNeC and its new component ConfigImporter is the class
ImporterDialog. A new instance of that class is created when a user chooses to import
the configuration of a computer in the VeriNeC's GUI.
ImporterDialog implements JFrame2, a window opens when it is instanced. (See chapter
5, ConfigImporter User Guide, for the appearance of the window.)
The user can choose different options in the window; these are stored in a new
ImporterEnvironment object, a member variable of the ImporterDialog object.

Only one object of ImporterEnvironment is instantiated during one run of
ConfigImporter. That object holds all needed information. That is the settings made by
the user about what to import and information about how to connect to the system,
information of the calling object about how to store the created XML data, and other
data generated during the importation of the systems network configuration.
Further ImporterEnvironment creates a new XMLConfiguration object which holds all
information about the VeriNeC <node/> XML element to be created.
XMLConfiguration provides methods to add sub-elements and attributes to the resulting
<node/> element. These methods are used on different points during the importation.
In the end of the importation a method of XMLConfiguration can be called to put all the
stored items together and create the resulting <node/> element.
These methods are realised using the Java API JDOM (org.jdom).

1 Java 2 Platform, Standard Edition, v 1.4.2, Software Development Kit
2 javax.swing.JFrame

ConfigImporter 4. Java Implementation of ConfigImporter

28

When the user has made his decisions and has pressed the "Import" button, the data is
stored in the ImporterEnvironment and Importer is started.
Importer creates an ImportConfigFiles and an ImportIptables object to import the
configuration data of network interfaces and iptables depending on the user settings.
These two classes save their analysis in the ImporterEnvironment object. In the end
Importer calls the method of XMLConfiguration described above to generate the
resulting XML file with the data gathered during the importation run. The file is then
saved for debugging reason. Then the VeriNeC item ConfigImporter is started for is
adapted, i.e. its <ethernet/> and <packet-filters/> elements are exchanged with the
newly created elements.

ConfigImporter 4. Java Implementation of ConfigImporter

29

4.2 ImportConfigFiles

A new instance of ImportConfigFiles is made by the Importer object.
ImportConfigFiles analyses the user settings given in the ImporterEnvironment object,
i.e. it looks up if it has to import Ethernet interface configurations or not, and whether to
import the local settings, to remotely connect to another system or to import
configurations given in files on the local file system.
The analysis results in creating a temporary copy of the directory containing the
network interface configuration files (normaly the /etc/sysconfig/network-scripts
directory).

ImportConfigFiles searches in this directory for all files starting with "ifcfg-eth" (and
"ifcfg-lo"). For each file found, a new ConfigFile object is produced. ConfigFile
provides a method to create a VeriNeC <nw/> XML element with the data of the
configuration file passed (see the next section, ConfigFile).
ImportConfigFiles creates a VeriNeC <ethernet/> XML element for all main (non-alias)
files and adds the <nw/> element given by the corresponding ConfigFile object.
If an interface has one or more alias files, ImportConfigFiles adds that alias files' <nw/>
element to the interface's <ethernet/> element.
The <ethernet/> elements are added to the ImporterEnvironment object by using the
intended method of XMLConfiguration.

4.2.1 ConfigFile

ConfigFile represents an interface configuration file. It gets the name of the file to
analyse, fetches the string content of the file and creates an IniEditor object of the file.

As the configuration files are of a simple form, there are existing parsers for them. One
is IniEditor1; this parser was chosen because it also works for one-sectioned files.
IniEditor is a library to analyse ini-style files. The application provides methods to get
the value of a certain option or to return all options defined in the file. IniEditor is a
product of ubique.ch and is under a Berkeley Software Distribution license2.

1 IniEditor is Copyright © 2003-2005, Nik Haldimann, http://ubique.ch/code/inieditor/
2 The license text is printed in the Appendix

ConfigImporter 4. Java Implementation of ConfigImporter

30

With the help of these methods, ConfigImporter parses the file and generates a VeriNeC
<nw/> XML element: For every possible attribute and sub-element the XML file can
define ConfigFile tests whether the corresponding option (see chapter 3.1.2, Get the
information for a <ethernet/> element) is set in the configuration file. If yes, it uses a
JDOM method to create an attribute, set its value and add it to the <nw/> element.

ConfigImporter provides methods to access the parameters set in the configurations file
and the created <nw/> element.

ConfigImporter 4. Java Implementation of ConfigImporter

31

4.3 ImportIptables

As described in chapter 3.2, the source of the importation of packet filters configuration
is the output of the iptables command iptables -Lvn.
The implementation is realised with the class ImportIptables. After analysing the
ImporterEnvironment object, this class has to set up a connection with the concerning
machine and execute the command on that system, or get the data form a file. The
output is stored in a String variable of the class and given to the Iptable class to create a
new object.
As there is no existing parser for the format of that information, an implementation of a
parser is needed. This is realised with the Parser and Lexer classes of ConfigImporter
(see next section, Parser for details).
The parser generates a parse tree; this is then traversed by Iptable. That class contains a
class for every possible sub-element of the VeriNeC <packet-filter-chain/> XML
element.
The constructors of these classes get a parameter, i.e. an instance of the corresponding
Parser class and decide whether to make an element. Each class has, as interface to its
calling object, a public variable holding the created element and a public boolean
variable saying whether an element has been created or not.
ImportIptables gets a list of the <packet-filter-chain/> elements created by Iptable and
adds them to a new VeriNeC <packet-filters/> XML element. Some additional attributes
are set, and the element is added to the XML file using the method of
XMLConfiguration. Further, the <prefix-list> elements also created during the
importation of iptables are added to the XML file.

4.3.1 Parser

The output of the command needs to be semantically tested, and a parse tree, that is a
hierarchical structure of the relevant items, has to be created. That is usually done by a
so called parser. Before the parser can do its job, a lexer has to divide the string into
lexical units.

ConfigImporter 4. Java Implementation of ConfigImporter

32

The Lexer class makes this lexical analysis of an input. It divides the string into tokens
using StringTokenizer1. As separators, the following characters are defined: blank,
return, new line, tabulator, the brackets "(" and ")", the colon "," and the exclamation
mark "!". For each token, a new instance of the class Node is generated, which can store
the token's word, its type, the line number and the position of its occurrence in the
string.

The list of tokens is then handed over to the Parser class. Parser analyses the tokens
and decides whether they can occur at that place. For example, the first token in the
output has to be the String "chain" (as blanks and new lines in the beginning of the
string are eliminated by the Lexer).
Besides testing, the parser has to generate the parse tree. The Parse tree's nodes are
extended Node objects, which can store the node's type and the type-specific items. A
node of the type "Rule" for example can store eight further Nodes object, one for each
column.
The Parser does not test if the string is an accurate iptables configuration, it can not test,
if the items are allowed to occur in iptables. It is supposed to be satisfactory. But it tests
whether the output has the expected structure, to guarantee a correct importation of the
settings.

1 java.util.StringTokenizer, see its JavaDoc for details

ConfigImporter

33

5 ConfigImporter User Guide

Once VeriNeC is started and its GUI appears, the user has to create a new node or to
load a saved network. With a right click on a node in the GUI the node's content menu
appears (see Figure 7). To start ConfigImporter, the user clicks on the "Import" menu
item.

Figure 7: The node's context menu

The configurations imported with ConfigImporter are in the end added to that node,
changing its XML <node/> definition.
After clicking on "Import" a new Import Dialog window appears (see Figure 8). This
window has three parts: a choice field, a settings field and a buttons filed.

The choice field

In the choice field the user decides which computer's network configurations to import.
He has to select one of the three options:
1. Import the configurations of this computer
2. Import the configurations of a remote computer
3. Import the configurations stored in files

ConfigImporter 5. ConfigImporter User Guide

34

He can import the settings of the machine he is working on by choosing the first item.
To import the settings of another machine on the network, the second option has to be
selected. By marking the third item, network configurations stored in files on the local
file system can be used as base for the importation.

Figure 8: The Importer Dialog window

The settings field

To import the network configurations, some additional information needs to be given by
the user. Depending on the selected option in the choice field, this is different
information. The appearance of the window changes slightly by selecting another item
in the choice field: to each item a different settings field is assigned.
In each settings field, the user has to mark a check box "import ethernet configuration
files" or a check box "import iptables configuration settings" if he wants to import the
one or the other or both.

ConfigImporter 5. ConfigImporter User Guide

35

When the user chooses the local system, the following items have to be set in addition:
• The location of the directory containing the configuration files.

This is set to "/etc/sysconfig/network-scripts/" by default but can be changed if it
exceptionally should be different. To select the desired directory the "Browse…"
button can be used or the path can be written directly in the text field. If the Ethernet
check box is not selected, this field is ignored.

• Whether or not to import the configurations of the loopback interface. This works
only if also Ethernet configurations are imported.

• The command to execute iptables. This is set to the command line "sudo
/sbin/iptables -L –vn". The "sudo" string can be deleted if the user is root. The
command string can also be changed if iptables is executed on a different location.
The option "-L –vn" should not be changed to guarantee a correct parsing of the
iptables output. This filed has only influence if the iptables check box is selected.

• The sudo password. This must be given if the "sudo" string in the command is kept.

If the user wishes to import the settings of a remote machine, the same settings
described above have to be set. Additionally, the information about the host to connect
to needs to be given:
• The host name, the user name and the user's password need to be written in the text

fields. The host name is already set to the name of the node selected in the
VeriNeC's GUI but can be changed if it is not the desired host.

• Additionally, a port number, a key file and a pass phrase can be set for ssh.

If the configuration settings should be taken from files stored on the local file system,
the location of the Ethernet configuration files and the location of the file containing the
iptable output must be given. These paths can be selected by using the "Browse…"
buttons or by directly writing them in the text fields.

The buttons field

Once all the decisions are made in the settings field, the "Import" button can be pushed
to start ConfigImporter. The configurations are then imported and stored to the selected
node of the GUI.
The "Reset" button can be useful to restore the default values in the different text fields.
By pressing the "Close" button the window is closed and the user is returned to the
VeriNeC's GUI.

ConfigImporter 5. ConfigImporter User Guide

36

Warnings and Errors

After pressing the "Import" button, ConfigImporter is doing its job. Once the
importation of the configurations is done, warnings are printed out to inform the user
about the items that could not be imported. The warnings are grouped to Ethernet and
iptables warnings. An example of such a dialog is given in Figure 9.

Figure 9: The WARNINGS Dialog

If during the importation an error occurs the user is informed by an ERROR dialog like
the one in Figure 10.

Figure 10: The ERROR Dialog

ConfigImporter

37

6 Conclusion

This thesis shows that it is possible to integrate importer functionalities to the VeriNeC
project. ConfigImpoter can now be used to generate abstract descriptions from network
configurations. System administrators could take this tool to start using VeriNeC
without redefining their existing network definitions from scratch.
But ConfigImporter has its limitations: only a few possible configuration settings are
imported for only a few services.

1. Limits of schema
As the services described in the VeriNeC's network definition are an abstraction of the
functionality of service type, the different implementation's special features may be lost.
So ConfigImporter only imports a small set of parameters in an Ethernet configuration
file and only very few options of the iptables command are supported by the VeriNeC's
network definition. While the omitted items may are not the important things,
something gets still lost during the importation.

2. Implement more things
To give VeriNeC the functionality of exchanging one machine of the network by
another machine with a different operating system (and other uses described in the
beginning of this paper), a lot more things need to be implemented:
• The importation of the DNS service needs to be implemented. The format of the

configuration files holding the DNS information requires the implementation of a
parser.

• Further services as serial and WLAN interfaces and routing need a realisation.
• ConfigImporter is only implemented for the Linux distribution Fedora Red Hat.

This is a good choice as it belongs to a widely used type of Linux distributions. But
there are other distributions that need an implementation of ConfigImporter.
Furthermore the importation of network configuration settings in other operating
systems should be realised.

A good choice was to take the information about iptables settings form the command
output. That part of ConfigImporter works not only for a single distribution but could
work for all UNIX-like systems (using iptables).

ConfigImporter is a small tool for VeriNeC and only a first step in the implementation
of a huge, versatile Importer module.

ConfigImporter

38

Bibliography

[1] The VeriNeC project homepage: http://diuf.unifr.ch/tns/projects/verinec/

[2] The Role of Simulation in a Network Configuration Engineering Approach.
Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche.
International Conference on Information & Communication Technology
(ICICT 2004), Cairo, Egypt.

[3] VeriNeC Translation Module. Working Paper.
David Buchmann. University Fribourg

[4] LINUX Administration Handbook.
Evi Nemeth, Garth Snyder, Trent R. Hein. Prentice Hall PTR, 2002.

[5] Red Hat Linux 9, Red Hat Linux Reference Guide. Red Hat Inc., 2003.

[6] IniEditor homepage: http://www.ubique.ch/code/inieditor/

[7] Networking HOWTO: http://www.netfilter.org/documentation
/HOWTO//networking-concepts-HOWTO.html

[8] Packet Filtering HOWTO: http://www.netfilter.org/ documentation
/HOWTO/packet-filtering-HOWTO.html

[9] Netfilter Hacking HOWTO: http://www.netfilter.org/documentation
/HOWTO//netfilter-hacking-HOWTO.html

[10] Iptables – Die Firewall des Kernels 2.4,
Wolfgang Kinkeldei, http://www.pl-forum.de/t_netzwerk/iptables.html

[11] NAT HOWTO: http://www.netfilter.org/documentation
/HOWTO//NAT-HOWTO.html

[12] Man page of IPTABLES: http://www.manpage.org/cgi-
bin/man/man2html?query=iptables

[13] Network Sniffer Ein Modul für VeriNeC.
Patrick Aebischer. Universität Freiburg, 2005

[14] Computer Networks
Andrew S. Tanenbaum. Prentice Hall, 2003.

ConfigImporter

39

Appendix A
Acronyms

API Application Programming Interface

BIND Berkeley Internet Name Domain

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSCP Differentiated Services Code Point

GUI Graphical User Interface

ICMP Internet Control Message Protocol

IP Internet Protocol

LAN Local Area Network

MAC Media Access Control

NIC Network Interface Card

TCP Transmission Control Protocol

UDP User Datagram Protocol

VeriNeC Verified Network Configuration

WLAN Wireless LAN

XML eXtensible Markup Language

ConfigImporter

40

Appendix B
Grammer of iptables output
Table = Chain*

Chain = name: ChainName;
 info: Parenthesis;
 rules: Rules

ChainName = BuiltinChain | UserdefChain
BuiltinChain = "INPUT"| "OUTPUT"| "FORWARD"| "PREROUTING"|
 "POSTROUTING"
UserdefChain = chainname: S

Parenthesis = Policy | References
Policy = targetname: BuiltinTarget
BuiltinTarget = "ACCEPT" | "DROP"
References = quantity: Z

Rules = Rule*
Rule = tar: Target;
 prot: Protocol;
 opt: Fragment;
 in: Interface;
 out: Interface;
 source: Address;
 destination: Address;
 options: Options;

Target = BuiltinTarget | SpecialBuiltinTarget | ExtensionTarget | UserdefChain
SpecialBuiltinTarget = "QUEUE"| "RETURN"
ExtensionTarget = "LOG" | "REJECT"|
 // -> and others, not supported by VeriNeC

Prot = neg: B;
 name: ProtName
ProtName = CommonProtocol | ProtocolName | ProtocolNumber
CommonProtocol = "tcp" | "udp" | "icmp" | "all"
ProtocolName = name: S
ProtocolNumber = number: Z // not supported by VeriNeC

Fragment = "--" | "-f" | "!f"

Interface = "*" | DefinedInterface
DefinedInterface = neg: B;
 interface: SpecificInterface

ConfigImporter

41

SpecificInterface = InterfaceName | InterfaceType
InterfaceName = name: S
InterfaceType = type: S "+" // z.b. eth+

Address = neg: B;
 address: IPAddr;
 mask: Z

Options = Option*
Option = key: OptionKey;
 value: OptionValue

OptionKey = "DSCP" | "ECN" | "MAC" | "icmp" | "tcp" | "udp" | "reject-with" | "LOG"
 // -> and others, not supported by VeriNeC

OptionValue = DscpOption | EcnOption | IcmpOption | MacOption |
 TcpOption, | UdpOption | RejectOption | LogOption
 //depends on OptionKey
 // -> and others, not supported by VeriNeC

DscpOption = MatchDscp | TargetDscp
MatchDscp = neg: B;
 filed: DscpField
DscpField = HexString
TargetDscp = DscpField // -> not supported by VeriNeC

EcnOption = MatchEcn | TargetEcn
MatchEcn = CWR | ECE | ECT
CWR = bit: B
ECE = bit: B
ECT = bits: Z
TargetEcn = B // -> not supported by VeriNeC

IcmpOption = neg: B;
 type: Z;
 code: Z

MacOption = neg: B;
 addr: MacAddr

TcpOption = Source | Dest | TcpFlags | TcpOptions

Source = neg: B;
 ports: Ports;

Dest = neg: B;
 ports: Ports;
TcpFlags = neg: B;
 flags: Flags;

TcpOptions = neg: B;
 opt: Z;

Ports = Port | Range

ConfigImporter

42

Port = port: Z
Range = lo:Z;
 hi:Z

Flags = mask: HexString
 comp: HexString

UdpOption = Source | Dest

RejectOption = Type
Type = "icmp-net-unreachable" | "icmp-host-unreachable" |
 "icmp-proto-unreachable" | "icmp-port-unreachable" |
 "icmp-net-prohibited" | "icmp-host-prohibited" |
 "tcp-reset" | "icmp-admin-prohibited"

LogOption = Level
 //other log-options not supported by VeriNeC
Level = level: Z

ConfigImporter

43

Appendix C
Files of ConfigImporter Demo

1. Ethernet configuration files

ifcfg-eth0

ifcfg-eth0
DEVICE=eth0
BOOTPROTO=dhcp
HWADDR=00:06:5B:A9:EF:60
ONBOOT=yes
TYPE=Ethernet

ifcfg-eth0:0

alias file ifcfg-eth0:0
DEVICE=eth0:0
HWADDR=00:06:5B:A9:00:60
ONBOOT=yes
TYPE=Ethernet
NETWORK=127.0.0.0

ifcfg-eth1

ifcfg-eth1
DEVICE=eth1
BOOTPROTO=dhcp
ONBOOT=yes

ifcfg-lo

DEVICE=lo
IPADDR=127.0.0.1
NETMASK=255.0.0.0
NETWORK=127.0.0.0
BROADCAST=127.255.255.255
ONBOOT=yes
NAME=loopback

ConfigImporter

44

2. iptables output

Chain INPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 679K 182M ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0
 0 0 DROP !icmp -- * * 0.0.0.0/0 0.0.0.0/0 state INVALID
 785K 93M eth0_in all -- eth0 * 0.0.0.0/0 0.0.0.0/0
 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 6
 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 0 0 DROP !icmp -- * * 0.0.0.0/0 0.0.0.0/0 state INVALID
 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 6
 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy DROP 1 packets, 60 bytes)
 pkts bytes target prot opt in out source destination
 679K 182M ACCEPT all -- * lo 0.0.0.0/0 0.0.0.0/0
 0 0 DROP !icmp -- * * 0.0.0.0/0 0.0.0.0/0 state INVALID
 0 0 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 6
 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain eth0_in (1 references)
 pkts bytes target prot opt in out source destination
 785K 93M ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0

ConfigImporter

45

3. The resulting XML File node.xml

<?xml version="1.0" encoding="UTF-8" ?>
<vn:node xmlns:vn="http://diuf.unifr.ch/tns/projects/verinec/node"
 hostname="test">
<!--Configuration written by ConfigImporter on Jul 26, 2005 11:25:40 AM-->
 <vn:hardware>
 <vn:ethernet name="Ehernet card eth0" hwaddress="00:06:5B:A9:EF:60">
 <vn:hint system="pc" slot="0" />
 <vn:ethernet-binding id="bind--1096002608" name="eth0">
 <vn:nw id="nw-996848155" onboot="yes" type="ip">
 <vn:dyn type="dhcp" />
 </vn:nw>
 <vn:nw id="nw-1298759089" onboot="yes"
 hwaddress="00:06:5B:A9:00:60" type="ip" />
 </vn:ethernet-binding>
 </vn:ethernet>
 <vn:ethernet name="Ehernet card eth1">
 <vn:hint system="pc" slot="1" />
 <vn:ethernet-binding id="bind--644411961" name="eth1">
 <vn:nw id="nw--292886184" onboot="yes" type="ip">
 <vn:dyn type="dhcp" />
 </vn:nw>
 </vn:ethernet-binding>
 </vn:ethernet>
 <vn:ethernet name="loopback interface">
 <vn:ethernet-binding id="lobind--1579874649" name="lo">
 <vn:nw id="nw--400720729" address="127.0.0.1"
 subnet="255.0.0.0" onboot="yes" type="ip" />
 </vn:ethernet-binding>
 </vn:ethernet>
 </vn:hardware>
 <vn:services>
 <vn:packet-filters global-in="chain1" global-out="chain3"
forward="chain2">
 <vn:packet-filter-chain name="INPUT" id="chain1">
 <vn:default-policy>
 <vn:drop-action />
 </vn:default-policy>
 <vn:packet-filter-rule>
 <vn:packet-match-list>
 <vn:match-in-interface if="lobind--1579874649" />
 </vn:packet-match-list>
 <vn:packet-action-list>
 <vn:accept-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list>
 <vn:match-icmp negate-icmp="yes" />
 </vn:packet-match-list>
 <vn:packet-action-list>
 <vn:drop-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list>
 <vn:match-in-interface if="bind--1096002608" />
 </vn:packet-match-list>
 <vn:packet-action-list>
 <vn:gosub-action goto="chain4" />
 </vn:packet-action-list>

ConfigImporter

46

 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list />
 <vn:packet-action-list>
 <vn:log-action level="info" />
 <vn:noop-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list />
 <vn:packet-action-list>
 <vn:reject-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 </vn:packet-filter-chain>
 <vn:packet-filter-chain name="FORWARD" id="chain2">
 <vn:default-policy>
 <vn:drop-action />
 </vn:default-policy>
 <vn:packet-filter-rule>
 <vn:packet-match-list>
 <vn:match-icmp negate-icmp="yes" />
 </vn:packet-match-list>
 <vn:packet-action-list>
 <vn:drop-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list />
 <vn:packet-action-list>
 <vn:log-action level="info" />
 <vn:noop-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list />
 <vn:packet-action-list>
 <vn:reject-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 </vn:packet-filter-chain>
 <vn:packet-filter-chain name="OUTPUT" id="chain3">
 <vn:default-policy>
 <vn:drop-action />
 </vn:default-policy>
 <vn:packet-filter-rule>
 <vn:packet-match-list>
 <vn:match-out-interface if="lobind--1579874649" />
 </vn:packet-match-list>
 <vn:packet-action-list>
 <vn:accept-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list>
 <vn:match-icmp negate-icmp="yes" />
 </vn:packet-match-list>
 <vn:packet-action-list>
 <vn:drop-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list />

ConfigImporter

47

 <vn:packet-action-list>
 <vn:log-action level="info" />
 <vn:noop-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 <vn:packet-filter-rule>
 <vn:packet-match-list />
 <vn:packet-action-list>
 <vn:reject-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 </vn:packet-filter-chain>
 <vn:packet-filter-chain name="eth0_in" id="chain4">
 <vn:default-policy>
 <vn:return-action />
 </vn:default-policy>
 <vn:packet-filter-rule>
 <vn:packet-match-list />
 <vn:packet-action-list>
 <vn:accept-action />
 </vn:packet-action-list>
 </vn:packet-filter-rule>
 </vn:packet-filter-chain>
 </vn:packet-filters>
 </vn:services>
</vn:node>

ConfigImporter

48

Appendix D
IniEditor License

IniEditor is Copyright (c) 2003-2005, Nik Haldimann
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

