
From SNMP deception
to VeriNeC’s Cisco service

Master Thesis in TNS Reseach Group

Departement of Informatics
University of Fribourg, Switzerland

Referent: Prof. Dr. Ulrich Ultes-Nitsche
Assistants: Dominik Jungo, David Buchmann

Author:
Christoph Ehret
Bd de Pérolles 81
1700 Fribourg
christoph.ehret@unifr.ch

30th September 2005



Abstract

This paper reports on my Master Thesis, which presents in a first part my observations on
the way how the Simple Network Management Protocol is integrated in network devices,
and in a second part my implementation of a Cisco translation service in the project
called Verified Network Configuration (VeriNeC) [13] funded by the Swiss National Sci-
ence Foundation. In today’s growing number of network devices, we really need an easy
and efficient way to manage all these different devices. SNMP is theoretically a good can-
didate since it is the standard management protocol, but practically it is unfortunately
misused by the network devices vendors. With VeriNeC, we can even go further than
just management. The entire network definition and configuration is represented in an
eXtensible Markup Language (XML) document which can be tested by its simulation
module. After successful tests, the XML abstract definition of the network is translated
into a configuration specific to a device and transfered to it. The translation is done using
eXtensible Stylesheet Language Transformations (XSLT). In my work, we can see how to
implement a translation service for Cisco.

Keywords: VeriNeC, SNMP, Cisco, Ethernet, Packet-filters, Routing



Contents

Contents 1

List of Figures 3

1 Introduction 4

2 SNMP 6
2.1 What is SNMP ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 SNMP components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Structure of Management Information . . . . . . . . . . . . . . . . . . 10
2.4 Management Information Base . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 SNMP Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 SNMP and the vendors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 SNMP and the future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The VeriNeC Project 18
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Network Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Network Definition Schema . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Translation part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Translation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Cisco translation service 27
4.1 Project requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Cisco part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1.1 Distribution method . . . . . . . . . . . . . . . . . . . . . 30
4.3.1.2 Configuration file . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Translators and schema extensions . . . . . . . . . . . . . . . . . . 35
4.3.2.1 Ethernet translator . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2.2 Packet-filters translator . . . . . . . . . . . . . . . . . . . 38
4.3.2.3 Routing translator . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2.4 Translation XML Schema extension . . . . . . . . . . . . . 41

4.3.3 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3.1 TFTP Server . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3.2 CiscoTransmit . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3.3 CiscoUtil . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



CONTENTS 2

4.3.3.4 DistCisco . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Improvements and critics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 SNMPv3 support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 TFTP alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Cisco importer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.4 Testing network for VeriNeC . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion 50

A Cisco Systems 53
A.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 First steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3 Command modes structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B Acronyms 58

Bibliography 60



List of Figures

2.1 The agent as gatekeeper [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Manager-Agent as Client-Server model [1] . . . . . . . . . . . . . . . . . . 9
2.3 SNMP in the TCP/IP protocol suite [1] . . . . . . . . . . . . . . . . . . . 9
2.4 Tree-like hierarchy of SMI . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 SNMP operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 VeriNeC’s architecture [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The translation module [13] . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 XSL Repository structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Translation process [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Abstract configuration to Cisco configuration . . . . . . . . . . . . . . . . . 36
4.2 Access list number ranges [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Access list syntax (fields in dark blue are optional) [25] . . . . . . . . . . . 40

A.1 Logo of Cisco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Command modes summary[4] . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3 Command modes summary (continued)[4] . . . . . . . . . . . . . . . . . . 57

3



Chapter 1

Introduction

Did you say deception? What has the word deception to do with the simple network
management protocol? Would disappointment not be a more appropriate word? If these
are the questions you had when you read my Master thesis title for the first time, I must
admit that you are completely right. At the beginning, this was actually my fault, since
I gallicized the word deception which has not the same meaning in English as in French.
Once a friend of mine made me conscious of that language error, I was considering again
my title thinking that disappointment would certainly be a better choice. But after think-
ing a while, I finally maintained the original title, deciding that deception implies somehow
disappointment and if we look at what we will experience with SNMP during the whole
documentation, I am sure that you will approve my choice.
If we come back to the meaning of the title, can you feel the impression of movement?
Can you see the idea of a starting and ending point? I am sure, you certainly understand
what I want to express with the title ”From SNMP deception to Cisco’s VeriNeC ser-
vice”, don’t you? With this title I want to show that my initial project goal was to study
the possibility to implement a SNMP distribution service for VeriNeC, but that I found
myself stuck in a dead end because of the unfeasibility of the project goal. From that
moment my project completely changed and I finally ended up with the implementation
of VeriNeC’s Cisco (translation) service. The title also contains all the different parts of
the project, which we will discuss throughout this documentation, namely SNMP, Cisco
and VeriNeC. VeriNeC is a rather complex framework, Cisco uses a very complex system;
how will it be possible to combine them together?

The first part of the documentation will focus on the simple network management pro-
tocol, well known under its abbreviation SNMP. We will begin to explain what SNMP
is and see the different ”actors” and components of this management protocol. Since
we speak about management, we will then have to speak about the managed data, how
we can represent it, how and where we store it, how we can access this data through a
network. Once we are through these more technical parts of the protocol, we will discuss
how good (or bad) SNMP has been integrated in vendors network devices; this is indeed
a sign that will show us how much the vendors trust in this management protocol. We
will end this chapter on a discussion about the future of the simple network management
protocol. This chapter will explain you why my initial project, called SNMP Research,
was finally not feasible and which important role SNMP can play in todays growing num-
ber of interconnected network devices.

4



CHAPTER 1. INTRODUCTION 5

Is SNMP really ”the” management protocol? Is it really as promising as it is in theory?
How good is SNMP supported in network devices vendors’ systems? How can we be
disappointed by SNMP? These are all questions we will answer in the first part.

Chapter 3 will give us an introduction to VeriNeC; this chapter introduces everything
we will need for a good comprehension of my Master thesis. We will first explain what
VeriNeC is and see the different modules that compose it. We will then see the concept of
abstract configuration document, which we can call the central point of VeriNeC. Finally,
we will focus on the translation module, since this is the part of VeriNeC that I use in my
project and have to extend with my Cisco service; this last part will explain the notions
of translator, restrictor and XSL Repository what will often be used in the next chapter.
What makes VeriNeC so interesting to use in heterogeneous networks? What can VeriNeC
do to improve the security of networks? Some questions that will be interesting to discuss
in this third chapter.

The fourth chapter will present my Master thesis and all the different concepts I had to
work with. We will begin this chapter with the enumeration of the different requirements
I had to achieve, followed by the explanation of the different technology elements I used to
carry the requirements off. We will then come to the most important part of this chapter,
namely the implementation. We will first begin to explain everything that has to do with
Cisco, i.e. how it is possible to distribute a configuration file to a Cisco device and what
the syntax and the content of such a configuration file do look like. After that, we will see
the different translators that will be used in the translation process for a given service,
and the schema that is extended to take my specific distribution parameters into account.
The last part of this important section is dedicated to the Java implementation, where
we will discuss all the classes that are used for my distributor. At the end of this chapter,
we will understand how my distribution service for Cisco is implemented, what is needed
to make it work and what are generally the different components needed to implement
our own distribution service. We will also discover throughout the whole chapter the
problems and difficulties I encountered and the solution I took to solve them. We will
close Chapter 4 with possible improvements and critics on my Master project.
How easy can we distribute a configuration to a Cisco device? What are the best strategies
and technologies to choose to have a Cisco translation service as efficient as possible? How
many Java classes will we need to implement the Cisco distributor? How good will my
VeriNeC Cisco translation service finally be? These are all questions we will discuss in
the fourth chapter.



Chapter 2

SNMP

In this chapter, we will see what the Simple Network Management Protocol is. This
chapter will also explain a part of the title of my Master Thesis : at the beginning of my
work, the title was indeed SNMP Research. I had to see if it was possible to implement a
SNMP distribution service to VeriNeC [13]; unfortunately, the results of my research were
not as we expected and another way had to be found. We will understand from section
2.6 why the title of my Master thesis changed from SNMP Research to SNMP deception1.
Before we come to this section, we should first take a closer look at SNMP, when it
was created and what its different components are. As we speak about management,
the information plays a capital role; we will see how this information is structured, i.e
represented, and what it actually contains. Like with every database, we need some
operations to access, retrieve and modify the data; we will see that SNMP also provides
the user with a set of operations to read and modify the managed information. Once
we are through this technical part, we can understand the disappointment I had and the
conclusions I had to take from my research about SNMP and its implementation by the
different vendors. To finish, we will shortly speak about what could be the future of the
Simple Network Management Protocol.

2.1 What is SNMP ?

In today’s World of complex networks, where routers, printers, switches or servers are
standard components, we really need a simple, but efficient way to manage them, to be
sure all the devices are running correctly and performing optimally. The Simple Network
Management Protocol (SNMP) is exactly what we are looking for : as we can read, it
is a simple protocol for managing and monitoring different Internet Protocol devices on
a network. The protocol provides the users with a simple set of operations (see section
2.5). As we will see, there are different versions of SNMP.

The Simple Network Management Protocol was introduced because a standard to manage
the growing number of network devices was needed; so appeared in 1988 the first RFCs
for SNMP, now known as Simple Network Management Protocol version 1, shortly
SNMPv1 :

1This is of course only the first part of the title

6



CHAPTER 2. SNMP 7

• RFC 1065 - Structure and identification of management information for TCP/IP-
based internets (now obsoleted by RFC 1155)

• RFC 1066 - Management information base for network management of TCP/IP-
based internets (now obsoleted by RFC 1156)

• RFC 1067 - A simple network management protocol (now obsoleted by RFC 1157)

This version was widely criticized, because of its poor security. The authentication of
users or hosts is based on a community string that we can compare to a kind of password;
this community string is sent in plain-text, like in FTP, what implies that it can be very
easily caught. In SNMPv1, there are typically three different types of communities:

• read-only

• read-write

• traps2

With this security problem in mind, the community tried to move toward a new SNMP
version.
SNMPv2 revises Version 1 and includes improvements in the areas of performance, security
and confidentiality. However, the new security system for Version 2 was actually so
complex, that at the end it was not widely accepted. Because of this complex security
framework, the actual Version 2 standard is known as Community-Based Simple Network
Management Protocol version 2, or simply SNMPv2c; it is SNMPv2 without the con-
troversial security model, using instead the simple community-based security scheme of
SNMPv1. SNMPv2c is presently widely supported by the vendors and different SNMP
implementations. SNMPv2 and SNMPv2c are defined in RFCs 1441, 1448, 1449, 1901,
1905, 1906, 1907 and 1908.
SNMP Version 3, defined in more than ten RFCs, finally resolves the security weakness
we have in the first and second version and has been recognized since 2004 by the Internet
Engineering Task Force (IETF) as the current standard version of SNMP. This standard
version only resolves the security issue, but makes no other changes to the protocol; that
is the reason why in practice all three versions of the protocol can easily coexist, and this
point of coexistence is defined in RFC 3584. Version 3 adds support for strong authen-
tication, using MD53 or SHA4 algorithms to authenticate users, and privacy, using DES
or AES algorithms to encrypt and decrypt SNMP messages.
We have seen so far what SNMP is and its different versions. We will now have a closer
look at how the protocol works and what are its components.

2The trap community string allows to authenticate the traps (asynchronous notifications) sent by the
agent.

3Since 2004, MD5 is not secure anymore or inappropriate for certain uses, due to a known collision
weakness: http://eprint.iacr.org/2004/199.pdf

4This algorithm has also been broken at the beginning of 2005 by the same research team that had
broken MD5 : http://cryptome.org/wang_sha1_v2.zip. This algorithm is today still more secure than
MD5.

http://eprint.iacr.org/2004/199.pdf
http://cryptome.org/wang_sha1_v2.zip


CHAPTER 2. SNMP 8

2.2 SNMP components

In SNMP world, there are two different actors : managers and agents. The manager, often
referred to as Network Management Station (NMS), is responsible for sending queries to
the agent in order to receive some piece of information and receiving traps from agents in
the network. Traps are only sent by the agents and when a specific event on their network
device happens, for example when there is a hardware problem or when the amount of
traffic exceeds a certain level. When the NMS receives a trap, it will take some kind of
action, like (for example) sending an SMS to the system administrator’s mobile phone to
inform him that there is a hardware problem on a given network device, or take some
specific measure to slow down the traffic.
At the other end, we have the agents. An agent is a program that runs on each managed
network device; it is responsible for sending responses to the NMS’s requests and traps
when a special event happened. The agent always knows the exact state of its device and
which information it can send or not; the agent is a kind of gatekeeper, as we can see it
on Figure 2.1, because it is the only one who has a direct access to the Information Base,
i.e the global state of the device (see Chapter 2.4). The agent can be a separate program,
running as a daemon under Unix for example, or it can be incorporated into the operating
system, like Cisco’s IOS.
As we can see it on Figure 2.2, we can compare the way the manager and the agent
communicate to the client-server model : the manager, which represents the client, is a
program that sends requests to the agent, while the latter, representing the server, pro-
cesses the request and sends an answer back to the manager5. What is special here, is
that we have more servers than clients.

Figure 2.1: The agent as gatekeeper [1]

The transport protocol that SNMP uses does also have its importance in the design of
our management protocol. It uses UDP as transport protocol on port 161 for sending and
receiving requests, and port 162 for receiving traps from managed devices; we can see this
on Figure 2.3. Why UDP and not TCP? First we have to remember that when admin-
istration is needed, then there could certainly be a problem, due to a heavily congested
network for example. UDP is connectionless, what means no end-to-end connection is
made between the agent and the NMS when they communicate together, in the contrary
to TCP. UDP requires low overhead, so the impact on the network’s performance is re-
duced, which is not to be neglected when we have to manage an overloaded network.
Imagine we would use TCP in a heavily congested network : it would lead to a situation
where the network would be flooded with retransmissions in TCP’s attempt to achieve re-

5This representation is of course not true for traps.



CHAPTER 2. SNMP 9

liability, what would have a bad impact on an already congested network. The unreliable
aspect of UDP, as it does not send acknowledgments for every packet, means that it is up
to SNMP to determine if packets are lost and if so to send them again; to achieve this, it
uses a timeout. The NMS sends a UDP request to an agent and wait for a response; if the
timeout is reached, the NMS assumes the packet was lost and retransmits it. The time
interval the NMS waits for a response before a timeout occurs and the number of times it
retransmits a packet is configurable. The unreliability of UDP is a bit more problematic
for traps : if an agent sends a trap, it has no way to know if it has arrived at the NMS or
was lost, as the NMS does not send an acknowledgment back to the agent and the agent
itself does not wait for a response from the NMS; and of course it is impossible for the
NMS to know that the agent has tried to send it a trap if the packet gets lost.
Now, we know how the Simple Network Management Protocol works and what are its
components. It is time to have a look at management information, i.e. what it contains
and how it is represented.

Figure 2.2: Manager-Agent as Client-Server model [1]

Figure 2.3: SNMP in the TCP/IP protocol suite [1]



CHAPTER 2. SNMP 10

2.3 The Structure of Management Information

To be able to understand what kind of data a device can provide, we first have to see how
this data is represented within SNMP. The Structure of Management Information (SMI)
defines how managed objects6 are named and specifies their associated data type. There
are two different versions of SMI :

• SMIv1: The original version of SMI defined in RFC 1155 and used by SNMPv1

• SMIv2: Provides enhancements for SNMP Version 2 and 3, and is defined in RFC
2578

The definition of managed objects can be divided into three attributes:

Name The name, or the Object Identifier (OID), uniquely defines a managed object.
The name can be represented either in a numeric form or in a more human readable
way. As we will see later, both are not very convenient.

Type and Syntax The data type of a managed object is defined using a subset of Ab-
stract Syntax Notation one; ASN.1 is a notation that specifies how data is repres-
ented and transmitted between managers and agents. This abstract notation is also
platform independent, which is the reason why it can be used without any problem
on any device possible. We will see more on this topic later in this section.

Encoding The Basic Encoding Rules (BER) are used to encode a single instance of an
object into a string of octets. BER is quite suitable for sending the object on a
transport medium.

We will now have a deeper look inside the naming of OIDs and into their syntax.

Naming the managed objects

To understand the naming of the managed objects, we first have to see that they are
organized in a tree-like structure, like we can see it in Figure 2.4. An object identifier is
made up of a serie of integers separated by dots, where each integer represent a node in
the tree-like structure. If we have a look at Figure 2.4, we see that the node mgmt (for
management) is represented by 1.3.6.1.2 which is the path to this node. As we already
told it, we can also describe the path to a node in a more human readable way; if we
again take as example the node mgmt, instead of using the serie of integers, we could use
the names of each node represented by an integer : iso.org.dod.internet.mgmt. As we
can see, it is not very convenient to describe a long path with one or the other form. The
SMI definition for the mgmt node would be the following :

i n t e r n e t OBJECT IDENTIFIER : := { i s o org (3 ) dod (6) 1 }
mgmt OBJECT IDENTIFIER : := { i n t e r n e t 2 }

6Under managed objects, we mean all the objects in a device that can be managed, like the MAC
address of an ethernet card in a router or the entries in the routing table



CHAPTER 2. SNMP 11

Figure 2.4: Tree-like hierarchy of SMI

Before ending this naming part, I just want to mention an important branch under the
private subtree. It is used to give hardware and software vendors the possibility to define
their own private objects for their hardware or software they want managed by SNMP.
We do not see this subtree on Figure 2.4, but SMI defines it as :

e n t e r p r i s e s OBJECT IDENTIFIER : := { pr i va t e 1 }

The path to this node would be given by 1.3.6.1.4.1 or with the more human readable
way, just iso.org.dod.internet.private.enterprises. Every enterprise, institution
or organization that is interested to have a private branch to put all its private objects in
it, i.e private MIBs (see section 2.4), can register freely at the Internet Assigned Numbers
Authority (IANA) to be assigned a private number. Cisco for example has been assigned
number 9, so all its private ojects space can be found under the path 1.3.6.1.4.1.9

or simply iso.org.dod.internet.private.enterprises.cisco. A list of the current
assigned numbers can be found at ftp://ftp.isi.edu/in-notes/iana/assignments/

enterprise-numbers.

Syntax

The naming of the managed object with SMI is one part, and the other part is the syntax,
the way how to represent and define the objects. As we already said it, a subset of ASN.1
is used to specify how data is represented and transmitted between agents and managers.
Like the computer programming language Java or C, SMI defines several data types that
tell us what kind of information a managed object can hold. SMI Version 2 extends

ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-numbers
ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-numbers


CHAPTER 2. SNMP 12

the data types that were defined with SMIv1. Here are a few data types from SMIv1 :
INTEGER , OCTET STRING, IPADDRESS, OBJECT IDENTIFIER, SEQUENCE, etc.
In the next section about MIB, we will see an example that shows the use of this syntax.

2.4 Management Information Base

We have just seen in the last section that SMI provides a way to define managed objects.
Now we need a way to store or gather all these objects in a single place. This is exactly
what the Management Information Base, shortly MIB, does.
We can compare the MIB to a database of managed objects that the agent tracks. Thanks
to the information base, the NMS knows the objects it can access and the actual status of
them. MIB is the definition, using SMI syntax, of the objects and also gives the meaning
of each object; we can compare it to a dictionary, where we can find the definition and
meaning of a word. Most of the MIBs, above all the vendors one, are distributed as
human-readable text files, so that they can be read and inspected with a normal text
reader program. Thanks to this, every vendor can distribute the different MIBs that
specify all its objects that can be managed with SNMP; Cisco for example has hundreds
of different MIBs for all its product lines.
Every object in a MIB file is defined as follow :

<name> OBJECT−TYPE
SYNTAX <datatype>
ACCESS <read−only | read−wr i t e | write−only | not−a c c e s s i b l e >
STATUS <mandatory | op t i ona l | obso l e t e >
DESCRIPTION

”Textual d e s c r i p t i o n d e s c r i b i n g t h i s p a r t i c u l a r managed ob j e c t . ”
: := { <Unique OID that d e f i n e s t h i s object> }

The ACCESS field is rather important for the managers, that is they have to know the
access permission to a managed object; some are read-only and maintain for example some
status information, some are read-write what means we can obtain some values from them
and modify them, others are write-only like objects where we specify for example which
protocol we want to use in a file transfer, and finally we can have not-accessible for objects
that are only used inside the MIB by the agent.
The following example of an object from a human-readable MIB file7 will show us how it
looks like and give us also a view of SMI syntax :

ccmHistoryEventCommandSourceAddress OBJECT−TYPE
SYNTAX IpAddress
ACCESS read−only
STATUS current
DESCRIPTION

” I f ccmHistoryEventTerminalType i s ’ v i r t ua l ’ , the i n t e r n e t
address o f the connected system .

7Extract of the CISCO-CONFIG-MAN MIB



CHAPTER 2. SNMP 13

I f ccmHistoryEventCommandSource i s ’ snmp ’ , the i n t e r n e t
address o f the r eque s t e r .

The value i s 0 . 0 . 0 . 0 i f not a v a i l a b l e or not app l i c ab l e . ”
: := { ccmHistoryEventEntry 10 }

A human-readable MIB file is full of object declarations, but also with a lot of other para-
meters we will not discuss here. The managed device has of course a compiled version of
these MIB files installed in it and all these MIB files make up its Management Information
Base.

2.5 SNMP Operations

SNMP provides the user with a set of operations that permits the managers and agents
to communicate and exchange messages. We will not explain all the operations in details,
but only give a little overview of each, and see at the end of the section an example of
one operation using one implementation of SNMP.

As we can see it in Table 2.5 on Page 17, all the operations are quite simple. The
table also shows us that some operations only appeared with SNMPv2.
We will finish this section, by showing a little example with a set operation; we will use
the Net-SNMP8 implementation in this example :

snmpset −v 2c −c myprivateCommunityName 10 . 1 0 . 1 0 . 1
1 . 3 . 6 . 1 . 4 . 1 . 9 . 9 . 9 6 . 1 . 1 . 1 . 1 . 2 . 3 3 3 i 1
1 . 3 . 6 . 1 . 4 . 1 . 9 . 9 . 9 6 . 1 . 1 . 1 . 1 . 3 . 3 3 3 i 1
1 . 3 . 6 . 1 . 4 . 1 . 9 . 9 . 9 6 . 1 . 1 . 1 . 1 . 4 . 3 3 3 i 3
1 . 3 . 6 . 1 . 4 . 1 . 9 . 9 . 9 6 . 1 . 1 . 1 . 1 . 5 . 3 3 3 a 1 0 . 1 0 . 1 0 . 2
1 . 3 . 6 . 1 . 4 . 1 . 9 . 9 . 9 6 . 1 . 1 . 1 . 1 . 6 . 3 3 3 s running−c on f i g
1 . 3 . 6 . 1 . 4 . 1 . 9 . 9 . 9 6 . 1 . 1 . 1 . 1 . 1 4 . 3 3 3 i 4

From the above example – this is actually the way it works with every SNMP implement-
ation – , we can see that we have to specify : first the SNMP version we want to use,
followed by the community name (for Version 1 and 2) and the IP address of the agent
we want to query; for Version 3, instead of the community name, we would have some
authentication and privacy parameters. Finally we can see all these series of integers,
that are the OID in the MIB we want to modify or create. As we can see, the command
is quite long and we can only hope that we made no typing mistake.

2.6 SNMP and the vendors

We have seen so far, that the Simple Network Management Protocol is the standard
protocol to manage IP based network devices; it provides the following features :

8Net-SNMP is a standard package on Mac OS X and most Linux distributions :
http://net-snmp.sourceforge.net

http://net-snmp.sourceforge.net


CHAPTER 2. SNMP 14

• Get the status and different information from network devices and applications

• Be informed by agents when special events on a network or application happened

• Configure managed devices or applications

• Strong authentication and privacy with Version 3

SNMP should actually be a dream, the Holy Land of every network administrator; even
if they have a lot of different network devices from different vendors to manage, they
just have to read the corresponding MIBs and see which objects they need to manage.
The administrators do not need to know the architectures and the way all these different
devices works, as they just have to read the MIBs that are all written in standard SMI
syntax. This situation remembers a well know citation from a well know book and film :
One to rule them All9 .
We can easily imagine how interesting this would be for network administrators... But
the reality is unfortunately not like that. SNMP is widely supported by network devices
vendors, but they only use traps and the monitoring part of the Simple Network Man-
agement Protocol; the configuration part is very poorly supported, at least it is never
possible to configure every parameter of a device using SNMP, like on Cisco devices for
example. Even if authentication and privacy are very important in communication today,
we still have some devices and applications that do not support SNMPv3.
Despite all we have seen, we can ask ourselves why we do not have a full and total support
for all the features provided by SNMP? There are two main reasons for this :

1. Business

2. Proprietary solutions are provided to users

Imagine a vendor has a quite complex and huge system to configure its devices; imagine
this same vendor would fully support and integrate SNMP to configure its devices. Now,
if a network administrator has to choose between something (s)he is already familiar with
as (s)he just has to read the MIBs and find the needed objects for configuration, and
something completely new to her/him, what will (s)he choose, if the result will be the
same at the end? Even if the system is really good and comes with a lot of features, the
administrator would choose the solution using SNMP. The vendor would have developed
the whole system for nothing, and there would be no possibility to make money with it.
For a vendor, it is also simpler to just develop a proprietary system than to follow stand-
ards and be dependent on standards consortium. So, the best solution for the vendor is to
suppress the configuration property of SNMP and to give the users no other choice than
learning how the system works. As the system is really complex, the vendor will propose
some special (expensive) courses or certifications, where the users will learn everything
about the system. Once an administrator has invested a lot of time and money to learn
how the system works, he feels confident with this system, will buy it and will continue
to use it in the future.
For the courses or certifications you also need some documentation, so the vendor can
again make some money with writing books. At the end, the vendor has really created a

9From the book The Lord of the Rings written by J.R.R. TOLKIEN



CHAPTER 2. SNMP 15

whole business around his complex system. We can write the following and very interest-
ing equation to show this :

No configuration via SNMP = Money

This is indeed exactly what Cisco (see Appendix A) does : they have written a complete
Operating System, known as Cisco IOS, to manage their devices, and for the same version
of the IOS, each device or series of devices can have some minor differences in its IOS.
Cisco IOS is quite complex and provides a lot of features, and every type10 of devices has
some special commands. If you really want to understand how the IOS works and how to
use it, the best thing you can do is to get one or several Cisco certifications, depending
on the type of devices you will need on your network; today, you really need to be Cisco
certified if you want to find a job as network administrator in a big enterprise network.
To have an idea on how good this certification business is11, we can have a look at some
examples12 :

• The exam prices range from $65 to $300 US dollars

• Lab exams cost $1250 US dollars

As we can see, it is quite a lucrative business. To this, we can add the books that are
recommended for the exam’s preparation, prices13 range from $30 to $120 US dollars. Of
course, this is only one supposition why some vendors like Cisco do not fully implement
SNMP in their system.

This leads us to another (possible) reason, why vendors prefer to not implement the
configuration ability of SNMP : they prefer the users to use their own solutions to man-
age their network devices. Cisco for example provides free tools that are really great and
widely used to manage their devices14. A common solution used presently by almost every
network devices vendor is to provide a web-interface to configure quickly and easily the
most important parameters of the device. For every day users who do not need to config-
ure further the device, this solution is sufficient, but what about the network managers?
Again, they have to use the command line interface (CLI ) if they want to change specific
parameters of the device. Actually, the web-interface – often applets that are loaded to
the user from the device – simply emulates the CLI commands. Of course, we can read
here or there, or see some models, where the web-interface emulates SNMP commands to
configure the device; this means that the configuration part of SNMP is supported, but
it is impossible to find more documentation about this. By the way, I have not found any
device that has this kind of configuration.
It seems that every vendor likes to reinvent the wheel again and again, preferring to do
his own cooking and business regarding the way to manage their devices or operating
system.

10With type, we mean firewalls, routers, VoIP solutions, IDS, IPS, etc.
11Cisco certifications have a very good reputation, are worldwide recognized, and are technically rather

difficult
12All the examples can be found on http://www.cisco.com
13Prices found on http://www.amazon.com
14One example is Cisco Network Assistant, a network management application, unfortunately only

working on Windows : http://www.cisco.com/en/US/products/ps5931/index.html

http://www.cisco.com
http://www.amazon.com
http://www.cisco.com/en/US/products/ps5931/index.html


CHAPTER 2. SNMP 16

2.7 SNMP and the future

After what we have seen in last section, it is clear for everyone that the future of SNMP
will mostly depend on the vendors. We can read on a lot of vendors support section and
forums on the Internet, that a better support of SNMP is promised in the future. What
have we to understand with a better support of SNMP? Does this mean more monitoring
possibilities and trap options? Or can we hope for a better support of the configuration
capabilities of the protocol? Unfortunately, we can be almost sure that configuration
will not be more supported than it is today, but that the monitoring possibilities will be
greater, i.e a bigger Management Information Base with a lot of managed objects, which
is not a bad thing for the network administrator as he uses the monitoring capabilities
more than the configuration. It is almost sure that there will never be a better support
for the configuration part of SNMP by the vendors. The only possibility can come from
applications and the possibility to extend the agents; for example, with SNMP4J [15] we
have the possibility to write our own agents. If we add some objects in the MIB, it would
be rather easy to extend the agent.

The Simple Network Management Protocol is obviously the standard protocol for net-
work management and it will certainly keep this status in the future, as long as it is
widely supported by the most important network device vendors. In our today complex
networks, it would be rather difficult to live and manage without SNMP.



CHAPTER 2. SNMP 17

Operation Description SNMPv1 SNMPv2 SNMPv3

get
Request initiated by the NMS to get an
information from the agent.

X X X

get-next

Lets the NMS retrieve a group of val-
ues from a MIB by sending a sequence
of commands, actually by sending a se-
quence of get operations. The get-next
operation does a traversal of a subtree,
where the beginning node is given in
the command.

X X X

get-bulk

Permits to get a large section of a table
at once. The agent tries to respond
with a get-response PDU that contains
as many objects as it can fit into the
PDU.

X X

get-response
Operation used by the agent to respond
to a get, get-next or get-bulk query.

X X X

set

Changes the value of a managed ob-
ject or creates a new row in a table.
Only objects defined with a read-write
or write-only access in the MIB can be
modified or created with the set com-
mand.

X X X

trap

A trap is sent by an agent to a NMS
when a special event happened, event
the agent was configured to catch and
signal.

X X X

notification
Identical to a trap, but standardizes the
PDU format of SNMPv1 traps.

X X

inform

Operation that allows manager-to-
manager communication. Very useful,
if more than one NMS is needed in a
network.

X X

report

Defined in draft version of SNMPv2,
but was never implemented. Is used
in SNMPv3 to allow SNMP engines to
communicate with each other.

X X

Figure 2.5: SNMP operations



Chapter 3

The VeriNeC Project

The VeriNeC project [13] aims to simplify network configuration. It is based upon an
abstract definition of a network and the nodes in that network expressed in XML. Each
node consists of its hardware (network interfaces) and a set of services such as DNS,
packet-filtering, and so on. The abstract configuration is translated automatically into
configuration specific to the actual hard- and software used in the network. The simulator
part of VeriNeC allows to check if the configuration will fullfill the desired behaviour prior
to really configure the nodes. Thanks to VeriNeC, we can greatly improve the security
of a network, because when we distribute the different configurations, we know exactly
what they do and that they were checked against configuration errors, bad configuration
or simply sure not to have a per-default configuration with passwords like 1234 or 0000;
at least, we can be sure that the configuration does what we want, and no more.

We will first have a look at the architecture of VeriNeC and see the different modules
that compose it. After that, we will discover how the network is described and defined in
the abstract definition using the XML syntax. Finally, we will have a closer look at the
translation module and its process.
This chapter is just an overview of VeriNeC and focuses only on the parts that will be of
importance to understand the next chapter.

3.1 Architecture

In this section, we will have an overview of the architecture of VeriNeC and see the
different modules it has. VeriNeC can be divided in four main parts, but has actually
many modules as we will see later :

• Simulation and Verification

• Translation

• Importation

• Edition

In Section 3.3, we will focus on the translation part, because this was the part that I
had to use for my work; the other parts will only quickly be mentioned (see [13] for more

18



CHAPTER 3. THE VERINEC PROJECT 19

details). As we can see on Figure 3.11, VeriNeC is made up by different modules :

Figure 3.1: VeriNeC’s architecture [13]

• Control center : graphical application to control every module that runs on the
management station

• Translator : creates and distributes the configuration data for a given node

• Simulator : simulates network behavior from the network definition

• Verificator : uses the simulator to test whether or not a network fulfills some given
requirements

• Editor : displays a network, can modify a node configuration and network layout,
and can also show the output of a simulation

• Importer : analyses networks and configuration files to create new repository data

You certainly now wonder how all this interconnects together and how this all works,
don’t you? I still ask for a bit patience, as I need to introduce a few more things before
all will become crystal-clear.

3.2 Network Definition

The network definition is certainly the central stone, the clé de voûte of VeriNeC. As we
already mentioned it, the network definition is an abstract definition of a network where
every node of the network is described using an XML syntax. A node can represent
a router, a hardware firewall, a printer, a workstation, a switch, etc., and every node

1Dotted lines denote parts of the system not yet or not fully implemented



CHAPTER 3. THE VERINEC PROJECT 20

contains information on its hardware and services it can provide. In the hardware part, we
typically specify the interface parameters, and in the service one, we can give parameters
for routing, packet-filtering, DNS, and so on. For every node, we will also have some
information about how to translate this abstract definition into configuration data proper
to the node that then can be distributed to it. To understand how this XML abstract
definition is organized and how nodes data is stored, we will have a look at the XML
schema that describes this.

3.2.1 Network Definition Schema

The XML Schema nodes.xsd defines how nodes and their hardware and services are rep-
resented. We can see a simple node on Listing 3.1.

Listing 3.1 : A simple node

<nodes xmlns="http://diuf.unifr.ch/tns/projects/verinec/node"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://diuf.../verinec/node

http://diuf.../verinec/node.xsd">

<node hostname="macintel06">

<hardware>

<ethernet name="EthernetIn">

<hint system="cisco" slot="Ethernet0"/>

<ethernet-binding id="bind-16">

<nw id="nw-75" type="ip" address="192.168.1.33"

subnet="255.255.255.0" type="ip"/>

</ethernet-binding>

</ethernet>

</hardware>

<services>

...

</services>

</node>

...

</nodes>

The node definition, as we can see it in the above example, has two sections :

1. Hardware

2. Services

The hardware element can currently have three different children, i.e interface types :

• ethernet

• wlan

• serial



CHAPTER 3. THE VERINEC PROJECT 21

In Listing 3.1, we can see an ethernet interface with IP address 192.168.1.33 and subnet
mask 255.255.255.0 that is bound to network bind-16. Ethernet interface can of course
only be physically connected to one network, while serial and wlan interfaces can be
connected to several different networks. The services element contains all the different
services that the node provides; currently, the supported services are routing, dns and
packet-filters.
As we will see in later examples, the prefix used for the nodes elements is usually vn, as
some other schemas are used in the abstract network definition file for other purposes. If
you want more information on the nodes schema, you can find it at http://diuf.unifr.
ch/tns/projects/verinec/node.xsd.

3.3 Translation part

In this section, we will have a closer look at the translation module in VeriNeC. As we
already mentioned it, the translation module has to generate configuration data proper
to a specific network node from the abstract network definition and then distribute this
data to the node using an appropriate distribution method; this can be done with cp2,
scp3, SNMP, etc. . We can see the translation module in details in Figure 3.2.

Configuration
Machine specific

Configuration
on Machines

selected translator

Restriction
warnings for

Network
Definition XSL Repository

Translation Restriction

Distribution

Import

Check existing
configuration

Translator

������

Figure 3.2: The translation module [13]

Remember that every node has a hardware section and can provide different services. As
a network is a heterogeneous environment, it is rather normal to have different imple-
mentations for the same service. If we take for example the packet-filter service, Cisco
800 Series router does it using access lists, while Linux uses ipchains, iptables, ipfilter or
whatever other implementation. To know which translator the translation module has to

2Copy command in Unix and Linux file systems
3Same as cp, but adds security using ssh and can connect to other machines.

http://diuf.unifr.ch/tns/projects/verinec/node.xsd
http://diuf.unifr.ch/tns/projects/verinec/node.xsd


CHAPTER 3. THE VERINEC PROJECT 22

use for this or that service, we use metadata.
All the translators are stored in the XSL Repository (see Figure 3.2) and are implemen-
ted using the eXtensible Stylesheet Language Transformations (XSLT). This means, as
we already discussed it above, that each service has several different translators, i.e XSLT
stylesheets, depending on the number of different implementations it has. On Figure 3.3,
we can see how the XSL Repository is structured and organized, that a service can have
different implementations; it also shows us that the children of the <hardware> element,
like ethernet, wlan or serial, are in fact treated like the different services.

Figure 3.3: XSL Repository structure

The translation module applies the right translator to the given node from the XML
abstract network file thanks to metadata (see Figure 3.2), and generates an XML in-
struction file. This file contains node’s system specific configuration data or scripts, gives
information to the distribution part on how to connect to the target system and some
other information towards specific tasks to be done before and after the configuration has
been changed. It can happen that a node parameter cannot be translated, because it is
for example not supported (yet) by the target system, so we need some warnings when
this situation happens. The solution is to use restrictors, that are also XSLT stylesheets,
so when a restriction is found, a warning is fired by the restrictor. As we can see in
Figure 3.3, every service implementation must have a correspondent restrictor, but it can
produce an empty output.
To make the translation possible, we need to put some extra information about it into
each node. We need information about the translator, i.e the XSLT stylesheet we need for
the translation, and information about the method to connect to the machine to config-
ure. For this purpose, we use a translation schema4 which defines types element to select
the translators and targets to define the way to connect and send the configuration to the

4Its namespace is given by http://diuf.unifr.ch/tns/projects/verinec/translation

http://diuf.unifr.ch/tns/projects/verinec/translation


CHAPTER 3. THE VERINEC PROJECT 23

machine; the namespace used for the translation elements within the XML nodes file is
usually tr. We will see some examples that show us how this schema can be used.

Listing 3.2 : Global type declaration

<nodes xmlns:tr=’http://diuf.../verinec/translation.xsd’>

<tr:typedef def-type-id=’ciscodef’>

<tr:type name=’Cisco1’ id=’cistype01’>

<tr:service name=’ethernet’ translation=’cisco800S’/>

<tr:service name=’routing’ translation=’cisco800S’/>

<tr:service name=’packet-filters’ translation=’cisco800S’/>

...

In Listing 3.2, we can see an example of a type declaration. It is wrapped in a typedef
element directly under the root element of the XML network definition. The type in the
example declares three services, and for each one, the translator to use for the translation;
if we have again a look at Figure 3.3, we can clearly see that for the packet-filters service
from above Listing 3.2, the translation will look into the packet-filters folder of the XSL
Repository and choose the one named cisco800S. This kind of type declaration, like in
Listing 3.2, can then be used as type reference for different nodes, and the typedef element
also defines a default type that will be used by nodes without type reference.

Listing 3.3 : Type declaration within node element

...

<node hostname="neochosen1">

<tr:nodetype type-id="cistype01">

<tr:service name="ethernet" translation="cisco1200S"/>

</tr:nodetype>

...

Nodes can reference types, but can also overwrite some translators. We can see this in
Listing 3.3, where the type cistype01 created in Listing 3.2 is referenced, and where the
service ethernet is overwritten. Nodes can create their own types, reference global types
and overwrite some translators, or have no nodetype element but reference the default
type declaration from the typedef element (see Listing 3.2).
We have seen so far examples about how types are declared, i.e how the translation process
knows which translator to choose from the XSL Repository to create a specific instruction
file with configuration data for each node. We will now explain with examples the way to
define how the configuration data can be set for the target system to configure.



CHAPTER 3. THE VERINEC PROJECT 24

Listing 3.4 : Targets declaration

<node>

<tr:nodetype>

<tr:service name="packet-filters" translation="cisco800S">

<tr:target name="Cisco800S">

<tr:cisco>

<tr:snmp targetAddress="10.10.10.1" hostIP="10.10.10.2">

<tr:security>

<tr:community snmpversion="v2c">

private17_veri

</tr:community>

</tr:security>

</tr:snmp>

</tr:cisco>

</tr:target>

</tr:service>

...

The above listing shows us that the target element can be declared in the nodetype ele-
ment. In this example, we can see that the configuration data has to be sent to a Cisco
device using a SNMP request; all the parameters that are needed to send the configuration
data to the Cisco target system are given. Other systems can use the cp or scp method to
send the configuration data5. Like the type declaration, targets can also be declared just
after the root element tag inside a service element of a typedef tag and later be referenced
from nodes, or be declared outside of a service element and be used as default target.
This is illustrated with Listing 3.5.

Listing 3.5 : Global target declaration

<nodes xmlns:tr=’http://diuf.../verinec/translation.xsd’>

<tr:typedef def-type-id=’acgt’ def-target-id=’deftarget’>

<tr:type name=’typename’ id=’acgt’>

<tr:service name=’ethernet’ translation=’linux-fedora’>

<tr:target name=’cpinside-example’>

<tr:cp prefix=’/tmp/inside’/>

</tr:target>

</tr:service>

<tr:service name=’wlan’ translation=’linux-fedora’/>

</tr:type>

<tr:target name=’tarname’ id=’deftarget’>

<tr:cp prefix=’/tmp’/>

</tr:target>

</tr:typedef>

...

5For more descriptions on the parameters that each method need, have a look at the translation
schema you can find at http://diuf.unifr.ch/tns/projects/verinec/translation.xsd

http://diuf.unifr.ch/tns/projects/verinec/translation.xsd


CHAPTER 3. THE VERINEC PROJECT 25

In the above listing, we can for example see that the wlan service will use the default
target deftarget to distribute the configuration data to the Fedora Linux system.

3.3.1 Translation Process

We have seen how the translation module works and what its different components are.
We will now have a quick look on the translation process itself and show its different steps :

1. VeriNeC has to determine the type of each node, before the translation can begin.
Each node needs to be completely resolved.

2. Warnings are produced if some features are not supported by the target system.

3. The translators resolved during step 1) are applied from the XSL Repository to the
node.

4. The configuration data is distributed to the system thanks to the information given
by the target elements.

These steps are well illustrated in Figure 3.4.

Translator

Resolve Type

Restrictor

Distribution

Network Repository
Warnings

Feedback

Figure 3.4: Translation process [13]

We have already seen that the translators transform the hardware elements and the ser-
vices into an XML instruction file with some implementation specific form depending on
the target system. If the target system is a Fedora Linux for example and we want to
configure its ethernet interface, then the instruction file will contain some configuration
data specific to Fedora Linux’s ethernet interface. This XML instruction file is conform-
ing the configuration6 schema. Listing 3.6 shows a configuration output for an ethernet
interface of Cisco after the ethernet translator has been applied to the node.

6Its namespace is given by http://diuf.unifr.ch/tns/projects/verinec/configuration



CHAPTER 3. THE VERINEC PROJECT 26

Listing 3.6 : Configuration output example

<configuration

xmlns="http://diuf.unif.../verinec/configuration"

xmlns:tr="http://diuf.unif.../verinec/translation">

<service name=’ethernet’>

<tr:target name=’Cisco800S’>

<tr:cisco>

<tr:snmp targetAddress=’10.10.10.1’ hostIP=’10.10.10.2’>

<tr:security>

<tr:community snmpversion="v2c">private17</tr:community>

</tr:security>

</tr:snmp>

</tr:cisco>

</tr:target>

<result-file filename=’/tmp/tftp/running-config’>

Interface Ethernet0

ip address 10.10.10.1 255.255.255.0

ip address 192.168.1.1 255.255.255.0 secondary

ip access-group 122 out

ip nat inside

no cdp enable

</result-file>

</service>

</configuration>

A configuration output is a collection of service tags (remember that hardware elements
and services are treated in the same way), one for each hardware element and service.
The target element from the node is also copied into the service tag, as this target in-
formation will be used for the distribution of the configuration data. The service element
may also contain some pre- and post-processing commands, and the way how the config-
uration is outputted (in our example, it is a result-file). For more information about the
configuration schema, have a look at http://diuf.unifr.ch/tns/projects/verinec/

configuration.xsd.

http://diuf.unifr.ch/tns/projects/verinec/configuration.xsd
http://diuf.unifr.ch/tns/projects/verinec/configuration.xsd


Chapter 4

Cisco translation service

We were so far introduced to SNMP in Chapter 2 and to VeriNeC in Chapter 3, both of
importance for my project. Chapter 2 revealed the explanation of the first part of the
title; this chapter will explain the second part, what will close the loop. As you will see,
we will speak a lot about Cisco Systems and how I could include it in VeriNeC.
In a first part, I will list the different requirements I had to fulfill in my project; each
of the requirements will later be explained in other sections. In a second part, I will
present the technology I used to make it possible to solve some problems and to make it
possible to achieve the project requirements. After having seen this first two sections, we
will attack the implementation part. To make it as interesting and realistic as possible,
I decided to follow the different steps I made during the implementation of my project.
The first thing I had to do, was to study Cisco; I had to see if it was possible to send a
configuration file to a device without using the command line interface, and make myself
familiar with the syntax and content of a Cisco configuration file. The next step was to
write the translators, and the corresponding restrictors, for the different services I had to
support for Cisco. Finally, we will have a look at the different Java classes I had to write.
In the last part of this chapter, we will see different points of my Master project that
can be improved in further development. Almost every problem we will discuss in this
last part will also be mentioned in the concerned sections when this or that problem
arises. Some can certainly be quickly solved, while other will need much more work and
reflection.

4.1 Project requirements

In this section, we will see the requirements I had to achieve for my project. In simple
words, I had to add Cisco support to VeriNeC, what means I had to extend the translation
module with a package that provides appropriate translators to create configuration files
specific for Cisco, and that extends the distribution with a method to send the configur-
ation to the device.
To accomplish my project, I had some parts to write and others to extend. We will go
through them, before we will have a deeper look in Section 4.3 :

• A Java class that implements methods to send and receive Cisco configuration files

• A Java class that implements some utilities for the Cisco configuration

27



CHAPTER 4. CISCO TRANSLATION SERVICE 28

• A Java class that implements the distribution part for Cisco

• A Java classes that implement a TFTP server

• XSLT Translators and Restrictors for the routing, packet-filters and ethernet ser-
vices

• The Extension of the translation schema for Cisco support

• Study of the Cisco IOS 12.3 and the configuration file syntax

I also had to familiarize myself with the Cisco 831 router I was given and that I used for
my project.

4.2 Technology

Before we go into the details of the implementation and the different parts of the project,
we will see an overview of the technology I used to realize my project, accompanied by
comments why I have chosen it. The technology elements will be divided in two groups :
languages and systems and tools and frameworks.

Languages and systems

Java : I have used and actually had to use Java1 as programming language, as VeriNeC is
completely written in Java. Thanks to this object oriented language, its modularity
and simplicity, Java is really a good choice, as everyone can write different parts
of VeriNeC, put them into packages and at the end assemble everything together...
And yes, it works !

XML : XML cannot really be seen as a programming language, but more as a meta-
language. I used XML[21] to write my examples and for testing my translators
and implementations. XML is today widely used, because it provides a structured
data representation that can be simply parsed and retrieved by different kinds of
applications, it is open and it is easy to use. For example, it is used in Mac OS X
system preferences file, it describes the structure of a network in VeriNeC, or will
even be the base structure of the next Microsoft Word file. XML can today be seen
as the central point of a lot of systems and applications.

XSLT : XSLT is a XML-based document language to transform XML files. The XSLT
processor uses XSLT rules to transform an XML document into another XML file,
or into another format like HTML, plain text, or any other format supported by
the processor. This transformation language is widely supported by the community;
XSLT is about to upgrade certainly this year to Version 2.0, as the Version 1.0 is
presently the recommended one and Version 2.0 is in final working draft status.
For VeriNeC, XSLT is important, as it is the language of the translators; we have
many different translators for one XML file, in fact the abstract network file. I

1If you need more information on Java, please have a look at Sun’s Java home page
http://java.sun.com

http://java.sun.com


CHAPTER 4. CISCO TRANSLATION SERVICE 29

used XSLT[23] to write, as already mentioned in Section 4.1, the translators and
restrictors for the ethernet, packet-filters and routing services.

XML Schema : XML Schema is also an xml-based language which defines the struc-
ture and content of XML documents. XML Schema is one of several XML definition
languages. We can say that it is the successor of DTD, which also describes the struc-
ture of XML documents but used a non-xml syntax. XML Schema was preferred to
DTD in VeriNeC, because the first one supports types, among other reasons, and
actually no new project would prefer DTD to Schema. I used XML Schema[22] to
extend the translation schema and to write a SNMP prototype schema (that is not
used in my project).

Cisco IOS : Cisco IOS is the operating system used on Cisco Systems routers, firewalls
and switches. I had to study the Cisco IOS system, its commands and the syntax
of the configuration files that are in fact IOS commands, as we will see in Section
4.3.1.2. We will speak more in details about Cisco in Appendix A.

Tools and frameworks

Eclipse : I used the free Eclipse2 IDE platform for the whole development, including
the XSLT stylesheets and XML Schemas. We can also add some powerful and very
useful plugins to Eclipse that at the end will result in an all-in-one development
tool.

oXygen : oXygen3 is a powerful XML editor written in Java, with a rather cheap edu-
cation license. This XML editor can be used both as a standalone application or
as an Eclipse plugin; this application has a lot of features, among them a nice and
simple to use XML editor, a visual Schema editor or a XSLT debugger. I used the
Eclipse plugin a lot to write my XSLT translators, test them, extend the Schemas
or write some XML examples and test files.

SNMP4J : This is a SNMP implementation in Java, presently the best and most ad-
vanced I have found. SMNP4J[15] supports SNMPv1, v2c and v3, what is not the
case for almost all other Java SNMP implementations.

JUnit : This is a powerful testing framework that permits to write simply and quickly
unit tests in Java. Testing is actually a very important and sometimes underestim-
ated task in a development cycle, as it permits to find some problems and bugs in
the code during development; the more tests we write, the most confident we can
be about our code. I used JUnit4 to test my functions and classes, and it permitted
me to find some errors I had not expected.

Now that we have seen the technology part, it is about time to switch to the implement-
ation details.

2http://www.eclipse.org
3http://www.oxygenxml.com
4Have a look at http://www.junit.org or http://junit.sourceforge.net/

http://www.eclipse.org
http://www.oxygenxml.com
http://www.junit.org
http://junit.sourceforge.net/


CHAPTER 4. CISCO TRANSLATION SERVICE 30

4.3 Implementation

For this implementation section, we will discuss the three different blocks I had to work
with to carry my Cisco translation module off. Whenever possible, we will see some code
snippets that illustrate the implementation we are looking at that moment. I will also
explain the reason why I implemented this or that code snippet like this and not in an-
other way.

We will first see the secrets of Cisco IOS and its configuration files in Section 4.3.1.
After that we will speak about the translators in Section 4.3.2, each one supporting a
service, and the XML Schema I had to extend to include my part of the project. Finally,
we will see in Section 4.3.3 the different classes I implemented to make the distribution
to the Cisco device possible.

4.3.1 Cisco part

The first thing I had to see was how it is possible to configure the Cisco 831 router, or
more generally Cisco devices, in a suitable way for VeriNeC; this means in a way that we
can configure remotely the device, without having to connect manually to it, in a way
that a configuration can be distributed to the router. Once I found a way to do it, I had
to focus on the syntax of the configuration file and the architecture of Cisco IOS, and
write in parallel the translators.
We will in a first part concentrate on the way we can distribute the configuration on the
device, and in a second part we will discuss the syntax of Cisco’s configuration file.

4.3.1.1 Distribution method

Paradoxically, the first thing I had to look for was the possibility to transfer the configura-
tion to Cisco devices in a way suitable for VeriNeC, in fact the last step in the translation
process (see 3.3). If there was no such possibility, my project goals could not be achieved;
this is the reason why I began indeed at the end of the translation process.
After browsing around on Cisco’s huge website5, I finally found an interesting technote
having the title How To Copy Configurations To and From Cisco Devices Using SNMP.
You now certainly react like I reacted : ”Fantastic, it is at least possible to configure most
Cisco devices with SNMP”. Unfortunately, as we saw it in Section 2.6, SNMP is not used
as it is intended to. What we actually do is send an SNMP command (see Listing 4.2)
to the device that tells it to download a given configuration file (see Section 4.3.1.2) at
a given address using a given protocol. The MIB Cisco recommends to use for copying
configurations is called CISCO-CONFIG-COPY and is supported on the 831 router since
IOS version 12.3-11.T36. In Listing 4.1, we can see the object that shows how to use the
CISCO-CONFIG-COPY MIB :

5It is sometimes difficult to directly find what you are looking for, since the website structure is not
always good.

6On older versions of the IOS, other MIBs could be used, like the CISCO-FLASH or OLD-CISCO-
SYSTEM, but they disappear in later versions or are not recommended by Cisco, and anyway are not as
powerful as the CISCO-CONFIG-COPY.

http://www.cisco.com/en/US/products/hw/routers/ps380/ps4873/index.html
http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094aa6.shtml
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-CONFIG-COPY-MIB


CHAPTER 4. CISCO TRANSLATION SERVICE 31

Listing 4.1 : Part of CISCO-CONFIG-COPY MIB

CcCopyEntry ::=

SEQUENCE {

ccCopyIndex Unsigned32,

-- configuration items

ccCopyProtocol ConfigCopyProtocol,

ccCopySourceFileType ConfigFileType,

ccCopyDestFileType ConfigFileType,

ccCopyServerAddress IpAddress,

ccCopyFileName DisplayString,

ccCopyUserName DisplayString,

ccCopyUserPassword DisplayString,

ccCopyNotificationOnCompletion TruthValue,

-- status items

ccCopyState ConfigCopyState,

ccCopyTimeStarted TimeStamp,

ccCopyTimeCompleted TimeStamp,

ccCopyFailCause ConfigCopyFailCause,

ccCopyEntryRowStatus RowStatus

}

It is important to understand that each creation of such a config-copy request object
creates an entry in a table, so that we can track the status of the object and delete it
from the table when we do not use the object anymore; the entry number in the table
is given in the SNMP command (see Listing 4.2). The object we can see on the above
listing is a sequence of different objects, which we will briefly explain. The first object,
of type Unsigned32, specifies the index of the object in the table. The second object
specifies which protocol, default one is tftp, we use to copy the configuration file to or
from the router; the ConfigCopyProtocol7 type defines five different supported protocols,
where each one is accessed by the integer between parentheses :

• tftp (1)

• ftp (2)

• rcp (3)

• scp (4)

• sftp (5)

If ftp, rcp, scp or sftp is used, we have to specify a username string for the ccCopyUserName
object, and if ftp, scp or sftp is used, we have to specify a password string for the
ccCopyUserPassword . The third and fourth object specify the types of files on which
a config-copy operation can be performed; like with the protocol specification, each file
type is selected by its integer between parentheses :

7All the special types are defined in the same MIB; have a look at the CISCO-CONFIG-COPY for
more details.



CHAPTER 4. CISCO TRANSLATION SERVICE 32

• networkFile (1)

• iosFile (2)

• startupConfig (3)

• runningConfig (4)

• terminal (5)

Either the ccCopySourceFileType or the ccCopyDestFileType (or both) must be of type
runningConfig or startupConfig. The next two objects specifies the IP address of the
server where the router can download or upload the configuration and the name of the file
on the server. The last object of the configuration items, by default set to false, specifies
whether or not a ccCopyCompletion notification should be issued on completion of the
tftp transfer; we have to be sure that notifications are allowed to be delivered.
The first object of the status items gives the actual state of the copy operation; the
ConfigCopyState defines different states :

• waiting (1)

• running (2)

• successful (3)

• failed (4)

If state 4 is returned, i.e the copy request failed, we can ask the ccCopyFailCause ob-
ject for the cause of the failure. The ccCopyTimeStarted object specifies the time the
ccCopyState last changed to the running state, or 0 if the state has never changed to
running (what can happen when stuck in waiting state), and the ccCopyTimeCompleted
object specifies the time when the ccCopyState last changed from the running state to
successful or failed state. Finally, the last object of the status items is the status of the
table entry; it can be set to activate, so that the specified table entry will be processed,
or it can be set to delete status so that the table entry will be deleted and freed.
Now that we have seen the CcCopyEntry object and its sequence of objects, we will be
able to understand easily the large SNMP command we have to use for a config-copy
request :

Listing 4.2 : SNMP config-copy request

snmpset -v 2c -c private17_veri 10.10.10.1

1.3.6.1.4.1.9.9.96.1.1.1.1.2.333 i 1

1.3.6.1.4.1.9.9.96.1.1.1.1.3.333 i 1

1.3.6.1.4.1.9.9.96.1.1.1.1.4.333 i 3

1.3.6.1.4.1.9.9.96.1.1.1.1.5.333 a 10.10.10.2

1.3.6.1.4.1.9.9.96.1.1.1.1.6.333 s running-config

1.3.6.1.4.1.9.9.96.1.1.1.1.14.333 i 4



CHAPTER 4. CISCO TRANSLATION SERVICE 33

First we can see on Listing 4.2 above that every object ends with the number 333; this
is the entry table number, and we can choose the number between 1 and 999, but before
using the same entry again, we have to be sure that it is free. The first object reference,
ending with 2.333, tells us that we will use the tftp protocol to copy the file, as it has
selected the integer (i) number 1 (see above for the integer numbers of the other available
protocols). The second object reference, ending with 3.333, specifies that we will use a
networkFile as source file type, corresponding to the integer 1, and the third object, end-
ing with 4.333, specifies that we use startupConfig as destination file type, corresponding
to the integer 3. The fourth object reference specifies the IP address (a) of the tftp server,
that is in our case 10.10.10.2 . The fifth reference gives the name of the file on the server
to use, in our case running-config. The last object reference, ending with 14.333, makes
that the command is processed immediately by setting the integer 4. If you have not
understood yet what this command does, it copies the file called running-config from the
tftp server with address 10.10.10.2 to the router using tftp protocol.
Once the command is executed, we can follow the status of the copy request, using the
ccCopyState object we have seen above

Listing 4.3 : SNMP check status request

snmpwalk -v 2c -c private17_veri 10.10.10.1

1.3.6.1.4.1.9.9.96.1.1.1.1.10

The command in Listing 4.3 will give us an integer as output, as we already saw it above;
as long as the copy request is working, we will receive 2 as output, but as soon as the
operation has ended, we will receive hopefully state 3 or, if something went wrong, state
4. When our request ended successfully, it is better not to forget to delete the entry of
the table, so that this entry can be used again immediately by another request; this can
be done using the ccCopyEntryRowStatus object and setting it to integer value 6 :

Listing 4.4 : Deleting the entry table

snmpset -v 2c -c private17_veri 10.10.10.1

1.3.6.1.4.1.9.9.96.1.1.1.1.14.333 i 6

Now we have seen how it is possible to copy a configuration file to and from a Cisco
device, we will have a look at the configuration file itself.

4.3.1.2 Configuration file

Cisco IOS has two main configuration files where you can find every feature and parameter
that are configured for the device :

• startup-config

• running-config

The startup-config file is read during the startup process of the device, the file that is
the per-default or initial configuration of the device. The running-config file reflects the
actual configuration and parameters of the device, what means that just after the startup



CHAPTER 4. CISCO TRANSLATION SERVICE 34

process has ended, the startup-config file and the running-config files are identical. If
we modify the configuration or add some new features to the device using CLI, this will
modify the running-config file, but not the startup-config file, which is actually a kind of
backup : if we misconfigured something and are stuck, we can simply reset the device
which will use again the startup-config file. If we are sure that our modifications work
fine and that it is what we wanted, we also have to change the startup-config, what can
be done by copying the content of the running-config to the startup-config file. This is
exactly what we can do using the command we saw in last Section 4.3.1.1, where we can
specify as file type startupConfig or runningConfig.
It is also important to notice, that we do not need to send the complete configuration file
to a device each time we have made modifications. It is enough to just send the portion
of the configuration that was modified, but sometimes we need to send some extra com-
mands with it, like for example if we want to delete or modify a rule in an access list; we
will see this more in details in Section 4.3.2.2.

We have now to have a look at the content of such a configuration file itself; in List-
ing 4.5 we can see parts of it.

Listing 4.5 : Parts of a configuration file

...

! Ethernet port 0

interface Ethernet0

ip address 10.10.10.1 255.255.255.0

ip access-group 122 out

ip nat inside

no cdp enable

hold-queue 32 in

!

! Access-list example

access-list 111 permit tcp any any eq telnet

access-list 111 permit icmp any any echo

access-list 111 permit icmp any any traceroute

access-list 111 deny ip any any

...

We will not go into the details of Listing 4.58, but if we look closely at it, we see that
each line corresponds to a command we would have typed if we had used the command
line interface (CLI) to configure the device. For example, to configure Ethernet port 0,
we first have to type9 interface Ethernet0 before we can configure it; after that, we can
assign it an IP address (10.10.10.1) and a subnet mask (255.255.255.0) with the command
ip address 10.10.10.1 255.255.255.0, etc. We can see, that if we want to understand a
configuration file, we have to understand the different CLI commands we would use to
configure the whole device. For the purposes of my project, I did not need to know every

8Have a look at the reference guides of Cisco IOS on Cisco’s homepage for more information about
each command.

9We will see more details about Cisco configuration in Appendix A



CHAPTER 4. CISCO TRANSLATION SERVICE 35

command or understand the whole content of a configuration file; I had to focus on the
commands that were useful for my needs. I had to find the commands that deal with the
services I had to support in my work : ethernet, packet-filters and routing. Sometimes,
for packet-filtering and routing for example, there exists different commands to do it with
sometimes more or less parameters and features, so I had to make choices and select the
one that suited me best. We will speak again in Section 4.3.2 about the commands I
used for the different services when I will present the different XSLT stylesheets for each
service and the strategies I adopted.

4.3.2 Translators and schema extensions

We have now everything in the hands to write the translators (see Chapter 3) for the
different services that have to be supported in my project :

• ethernet

• packet-filters

• routing

We have seen in Section 4.3.1.2 the syntax and the format of a Cisco configuration file,
so as we now know the result we have to find after the translation, we can write the
translators for each service that will translate the abstract configuration document into a
Cisco configuration file; we can see a little example of the result on Figure 4.1 on Page 36.
We will speak about each translator and come again on the IOS commands, introduced
in previous section, that are used to reflect the abstract configuration. We will see some
concrete examples with the nodes XML file that illustrate best the translation from one
state to another. We will of course not go through the whole XSLT file, but only speak
about the most important parts of it. We will also see that sometimes it is not possible
to translate a configuration exactly like it should be, and that sometimes we should need
more information from the abstract configuration in order to configure the Cisco device
properly. This aspects will also be discussed in the next three sections.

4.3.2.1 Ethernet translator

The translator for the ethernet service was certainly not the easiest to write, because I
had to deal with parameters I should have needed for the Cisco configuration file but that
were nowhere to be found in the abstract configuration document, or information that
were in the ethernet element of the abstract configuration, but located somewhere else in
the Cisco configuration.
Listing 4.6 shows us a typical example of how the ethernet interfaces are configured with
Cisco, so we can see what should be the result of our translator.

Listing 4.6 : Ethernet interface Cisco configuration

...

interface Ethernet0

ip address 10.10.10.1 255.255.255.0

ip access-group 122 out

ip nat inside



CHAPTER 4. CISCO TRANSLATION SERVICE 36

no cdp enable

hold-queue 32 in

!

interface Ethernet1

ip address dhcp client-id Ethernet1

ip access-group 111 in

ip nat outside

ip inspect myfw out

duplex auto

no cdp enable

...

Figure 4.1: Abstract configuration to Cisco configuration

As we can see it in Listing 4.6, we have generally at least two Ethernet interfaces con-
figured, one connected to the inside network (Ethernet0), and one to the outside network
(Ethernet1).
The first important parameter we have to find in the abstract configuration under the
ethernet section is the use of the <hint/> element; with this element, we specify that the



CHAPTER 4. CISCO TRANSLATION SERVICE 37

ethernet configuration is for a Cisco device10 and we use the slot attribute of the element
to specify which interface we want to configure. For interface Ethernet0 from Listing 4.6,
we would have the example we can see on Listing 4.7 .

Listing 4.7 : Use of the <hint/> element for Cisco

...

<ethernet name="EthernetIn">

<hint system="cisco" slot="Ethernet0"/>

...

If this element is not used, it is impossible for the system to know the name of the ethernet
interface, and if other attributes are used within <hint/>, the restrictor would complain
and explain what is not right.

The next element we will introduce is the use of <nw-dnsserver>, the element that deals
with DNS server information. In the node XML Schema, we can see that this element is
attached to an interface and each interface can have as many DNS servers as needed. If
we now have a look at Cisco IOS documentation, we first see that DNS server informa-
tion is not bound to a specific interface and thus declared outside of their configuration;
moreover, we can only specify six DNS servers. The Cisco IOS command that permits to
define name servers is ip name-server followed by the IP address(es) of the name servers
and is to be used in global configuration mode11. The translator scans all the ethernet
elements in the abstract configuration to look if there is a <nw-dnsserver> element and
writes it in the output configuration; if ten are found, ten will be written, but when the
file is distributed to the Cisco device, it will only take into account the first six one. The
problem is that there is no way to specify which ones are the most important DNS servers
to use, if there are more than six. Of course, if there is no reason to give one DNS server
more importance than to another, we could simply add a recursion to the translator that
would only write the first six found DNS servers into the output configuration.

Another difference between the abstract VeriNeC and Cisco configuration is the way
packet-filter rules are assigned to interfaces. Within the nodes XML Schema, we can see
that we can assign a packet-filter-chain to an interface in the <packet-filters> element, as
this is done in the interface configuration with Cisco using the ip access-group command.
This last command refers to an access-list (see Chapter 4.3.2.2) using its number, the one
that follows access-group. With the translator, once I am about to write the output config-
uration, I have to jump to the packet-filters section to see if there is an <if-map> element
in the <interface-filter-mappings> element attached to the current processed <ethernet>
element; I can find this thanks to the interface attribute that references the id attribute
of its <ethernet-binding>. Once I found an <if-map> element, I have to jump to the
<packet-filter-chain> element referenced by the chain attribute, where I will finally find
the number of the access-list to write in the output configuration file.

There are still some problems with the translator that could not be resolved due to

10The hint tag is not only used for Cisco, but also for several other systems.
11Have a look at Appendix A for more information about the different configuration modes.



CHAPTER 4. CISCO TRANSLATION SERVICE 38

parameters proper to Cisco and impossible to express within the abstract configuration.
It is impossible to activate the Cisco discovery protocol (expressed with cdp in Listing
4.6), disabled per default, with VeriNeC. There is also no possibility to parameter nat ;
this problem was partially solved using hard code, choosing that Ethernet0 will normally
have ip nat inside, and Ethernet1 ip nat outside, but it is not possible to change this using
VeriNeC, as there is no element that deals with NAT. For this special cases, and there are
certainly more I have not seen yet, we should perhaps create an extra XML Schema which
would permit to define all this extra parameters, but then we would have a problem with
the simulation part. The last problem I had with my 831 router, was more a hardware
problem; it is impossible to really configure the ethernet hub ports from the router, like
giving an IP address or a netmask, because these interfaces are working on layer 2.

As some parameters from the abstract configuration document are not supported for
Cisco, or at least for the 800 series routers, I had to write a restrictor for the ethernet
service. For more details about the restrictor, I invite you to have a look at it in the
repository.

4.3.2.2 Packet-filters translator

The translator for the packet-filters service was certainly the one that cost me most read-
ing and searching. I had to find what corresponds as good as possible to the filtering
rules definition from the abstract file, as with Cisco, you have different possibilities to
filter packets, even dynamic packet filtering. The chosen solution was also the closest one
to the packet-filter-chain of the abstract definition. I used the access-list IOS command
as solution, which you can see as example on Listing 4.8.

Listing 4.8 : access-list example

access-list 111 permit tcp any any eq telnet

access-list 111 permit icmp any any administratively-prohibited

access-list 111 permit icmp any any echo

access-list 111 permit icmp any any echo-reply

access-list 111 permit icmp any any traceroute

access-list 111 permit icmp any any unreachable

access-list 111 permit udp any eq bootps any eq bootpc

access-list 111 permit udp any eq bootps any eq bootps

access-list 111 permit udp any eq domain any

access-list 111 permit udp any any eq isakmp

access-list 111 permit udp any any eq 10000

access-list 111 permit tcp any any eq 139

access-list 111 permit udp any any eq netbios-ns

access-list 111 deny ip any any

With above listing, we can see that the access-list command works like the <packet-filter-
chain> element :

• a number (111 in the example) that permits to know to which access-list (chain) a
rule belongs to



CHAPTER 4. CISCO TRANSLATION SERVICE 39

• a permit or deny action

• a pattern definition, i.e filtering parameters (Figure 4.3 for more details)

• order importance of the rules

The number identifying the access-list does not only play the identification role, but also
serves to know to which type of access-list it belongs. See Table 4.2 for an example of the
access list number ranges that we can use to filter traffic :

<1-99> IP standard access list
<100-199> IP extended access list
<200-299> Protocol type-code access list
<300-399> DECnet access list
<600-699> Appletalk access list
<700-799> 48-bit MAC address access list
<800-899> IPX standard access list
<900-999> IPX extended access list

<1000-1099> IPX SAP access list
<1100-1199> Extended 48-bit MAC address access list
<1200-1299> IPX summary address access list
<1300-1999> IP standard access list (expanded range)
<2000-2699> IP extended access list (expanded range)

Figure 4.2: Access list number ranges [2]

For my project, I only had to use the IP extended access list, which corresponds to ranges
numbers <100-199> and <2000-2699>. As the number has an importance and is what
identifies the access list ”membership”, I had to find a way to use it in the abstract defin-
ition. I decided to use the name attribute of the <packet-filter-chain> element to put
the important access list number, as we can see it on Listing 4.9.

Listing 4.9 : Using ACL number

...

<packet-filter-chain name="111" id="pfc2">

...

The problems I had were less with the ACL numbers, but more with the way how the IOS
configures the access lists or takes the changes into account. You cannot simply upload a
new file to the Cisco device with just the rule to modify or the rule to delete (using the
no access-list command). You have to first erase the entire access list rules, for example
with no access-list 111 to delete the access-list from Listing 4.8, and rewrite again the
whole access list with the rule to modify or without the rule you want to delete. As I do
not know if the abstract configuration for the access list is the same as the one already
on the device, I have each time to delete first all the access lists and rewrite everything
from what is given in the abstract configuration. An important thing I do not know yet,
is whether or not the fact that all access lists are first deleted could open a security hole
for a very short moment. This depends on the way the device reacts when configuration
parameters are changed. We will see some propositions to resolve this in Section 4.4.



CHAPTER 4. CISCO TRANSLATION SERVICE 40

Figure 4.3: Access list syntax (fields in dark blue are optional) [25]

Like with the ethernet translator, I also had to write a restrictor for the packet-filters
service. Some options of the abstract configuration are not supported for Cisco, but there
are actually also a lot of parameters in the access lists that are not possible, for the
moment, to express in the abstract configuration. If you want more information on the
restrictor, I invite you to have a look at it.

4.3.2.3 Routing translator

The routing translator was certainly the easiest and shortest one to write. I only had to
support static routing, leaving dynamic routing support for future improvements. With
Cisco IOS, you have a lot of different commands and possibilities for doing routing, but
the simplest one and also the closest to the <static-routes> element parameters, is to use
the ip route command (in global configuration mode). This command has quite a lot of
argument possibilities, but I will only present a simplified version of it that is sufficient for
our understanding and needs. We can see this simplified version of the ip route command
on Listing 4.10 .

Listing 4.10 : Simplified ip route command

ip route prefix mask {ip-address} [distance]

For example, ip route 10.1.0.0 255.0.0.0 171.28.2.3 110 tells that packets for network
10.1.0.0 will be routed through a router at 171.28.2.3 if dynamic information with admin-
istrative distance less than 110 is not available. The (optional) distance number can have
a value between 0 and 255; the smaller the number is, the better we can trust the routing
information. Every routing protocol has a default distance12, for example static route has
value 1, IGRP 100, OSPF 110, RIP 120, etc. .
If we look at the <static-routes> element example from the abstract configuration on
Listing 4.11, we can already see a few problems I had to solve within the translator or
using a restrictor.

Listing 4.11 : <static-routes> element example

<static-routes>

<route metric="22" scope="global" zone-index="as2">

<route-destination address="192.168.7.3" length="24"/>

<nexthop via="10.10.1.23"/>

12Have a look at the node XML Schema under routing section for a complete list



CHAPTER 4. CISCO TRANSLATION SERVICE 41

<nexthop device="i80_3"/>

<nexthop via="1.2.3.4"/>

<nexthop weight="123"/>

</route>

</static-routes>

If we have a look at the attributes of the <route> element, we can see that there is no
support for them in Cisco IOS, what means that a restrictor is at least needed for them.
If you have a look at the restrictor, you will see that I had to take some other parameters
in consideration.
Next, we see that the netmask value, given with the length attribute of the <route-
destination> element, is not in dotted notation like it has to be in Cisco configuration,
but in integer notation where the number corresponds to the number of bits (from left)
that have 1 as value; so 24 = 11111111.11111111.11111111.00000000 (255.255.255.013). I
decided to do the conversion from the integer notation to the dotted notation within the
translator, as so I will not need to do it later, which would cost to process again the whole
configuration file just for doing the conversion.
If we compare the <static-routes> element definition with the ip route command, we can
see that the former can have as many <nexthop> elements as it wants and having different
parameter possibilities, while the latter can have only one next hop information and this
information can only be the IP address of this next hop. All the <nexthop> elements
with another attribute than via will be detected by the restrictor, and if there are more
than one with the via attribute, only the first one will be taken as next hop; the rest will
be discarded and the restrictor will give a warning to the user.
The last problem I had with the routing translator was testing the result; I could not see
if my routing settings worked or not, as the device was not connected to a network and
this seems to be the condition to make the ip route parameters to be written in the Cisco
configuration file.

4.3.2.4 Translation XML Schema extension

The only XML Schema I had to extend was the translation schema. I added a <cisco>
element that contains only an <snmp> element; if we have a look at it in Listing 4.12,
we could say that the <cisco> element has no reason to exist and is superfluous, since
using the <snmp> element from Listing 4.13 as first element would have the same result.

Listing 4.12 : <cisco> element definition

<xs:element name="cisco">

<xs:complexType>

<xs:sequence>

<xs:element ref="snmp" />

</xs:sequence>

</xs:complexType>

</xs:element>

13I think that it would be much easier to use a netmask attribute value instead of the length attribute.
This could perhaps be changed in the node XML Schema.



CHAPTER 4. CISCO TRANSLATION SERVICE 42

I decided to make it like that to show that SNMP will be used for Cisco and not in a
way we would think it would be used (have again a look at Section 2.6 if this sentence
is not clear to you). Next, we need a way to give all the needed options for the SNMP
command, like the SNMP version we want to use, the IP address of the device and the
TFTP server14, and the different security parameters needed for the different versions of
SNMP.
In Listing 4.13, we define the <snmp> element :

Listing 4.13 : <snmp> element definition

<xs:element name="snmp">

<xs:complexType>

<xs:sequence>

<xs:element ref="security" />

</xs:sequence>

<xs:attribute name="targetAddress"

type="IPv4" use="required" />

<xs:attribute name="hostIP" type="IPv4" use="required" />

</xs:complexType>

</xs:element>

It is in this element that we have to specify the IP address of both the Cisco device and
TFTP server. Next, comes the definition of the <security> element :

Listing 4.14 : <security> element definition

<xs:element name="security">

<xs:complexType>

<xs:choice>

<xs:element ref="community" />

<xs:element ref="snmpv3" />

</xs:choice>

</xs:complexType>

</xs:element>

If you remember what we have seen in Chapter 2, SNMP has three different versions, but
two different used security models. If we have a look at Listing 4.14, we can see that in
the <security> element, we have to choose between the community based security model
used by SNMPv1 and SNMPv2c, and the security model for SNMPv3. In Listing 4.15,
we can see the definition of the first security model :

Listing 4.15 : <community> element definition

<xs:element name="community">

<xs:complexType >

<xs:simpleContent>

<xs:extension base="xs:string">

14The server needs to run on the same machine VeriNeC is running on, but this can be changed with
a little bit of coding.



CHAPTER 4. CISCO TRANSLATION SERVICE 43

<xs:attribute name="snmpversion" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="v1|v2c" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

In this <community> element, we have to specify of course the community name, but
also to precise which of SNMPv1 and v2c has to be used. If we now come to the next
security model, we are already sure that SNMPv3 is used. This security model, as we
have already seen it, is much more secure and complete :

Listing 4.16 : <snmpv3> element definition

<xs:element name="snmpv3">

<xs:complexType>

<xs:sequence>

<xs:element name="username" type="xs:string"/>

<xs:element name="securityLevel">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="NOAUTH_NOPRIV |

AUTH_NOPRIV | AUTH_PRIV"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element ref="auth" minOccurs="0"/>

<xs:element ref="privacy" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing 4.16 reminds us that with this security model, we have support for authentication
and privacy. It is so not surprising to find an element where we have to specify the user-
name; if we only give the username, we are using NOAUTH NOPRIV as securityLevel,
what would actually be the same as the community based security model. If we use
AUTH NOPRIV as securityLevel value, we have to add the <auth> element, and with
AUTH PRIV we have to use both <auth> and <privacy> elements. In Listing 4.17, we
can see the definition of the <auth> element :

Listing 4.17 : <auth> element definition

<xs:element name="auth">

<xs:complexType>



CHAPTER 4. CISCO TRANSLATION SERVICE 44

<xs:attribute name="function" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="MD5|SHA"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="passwd" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

In this element, we just have to choose which authentication function we want to use
between MD5 or SHA, and of course give the password that will be used by the function.
Finally, we can see in Listing 4.18 the definition of the <privacy> element :

Listing 4.18 : <privacy> element definition

<xs:element name="privacy">

<xs:complexType>

<xs:attribute name="function" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="AES128|AES192|AES256|DES"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="passwd" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

Like with the authentication element, we have to specify which encryption method we
want to use between DES and different flavors of AES, and of course give the password
used for encryption/decryption.

These different definitions we have just seen can certainly also be used in the future,
if one day VeriNeC wants to add a true SNMP distribution service. There should perhaps
just be an OID element to add. Before this becomes reality, we have to wait on a better
support from the vendors.

4.3.3 Java

The Java implementation part is the last one we still have to discuss. If we have a look
at VeriNeC’s translation module, we will see that the only Java class I have to write
is a distributor for my Cisco service that implements the verinec.translation.IDistributor
interface; this is the interface that every distributor has to implement. As you can imagine,
this was certainly not the only class I wrote for my project, as I needed much more
functions and procedures to be able to distribute the configuration file to the Cisco 831



CHAPTER 4. CISCO TRANSLATION SERVICE 45

router. We will see each of the classes one by one, explaining what they do, why I had
to implement this or that, what special library I used. I will of course not explain every
function of each class or explain the code in details, because if you are interested in this,
I think that it is better to read the Java documentation or directly have a look into the
code.

4.3.3.1 TFTP Server

You certainly remember our discussion of Section 4.3.1.1 on Page 30 about the distribution
method for Cisco. We saw that there are different protocols that can be used to exchange
a file with Cisco devices :

• TFTP

• FTP

• RCP

• SCP

• SFTP

I decided to implement the TFTP protocol, because it is the one that is apparently most
used for such tasks, the most cited one in Cisco’s tech notes, and also the easiest one to
implement. TFTP stands for Trivial File Transfer Protocol and is a very basic form of
FTP; it has no authentication nor encryption support, cannot list directory contents and
works on UDP port 69. If you want to write a file to a TFTP server, you have to be
sure that there already exists a file, empty or not, with that file name. As this protocol
is generally used in local or private networks, we do not have to be concerned by the lack
of security, unless we are in a very big corporate network. Since it uses UDP, it is up to
the application to have a kind of acknowledgment mechanism.

The implementation of TFTP was straightforward, as the protocol is described in only
one RFC, namely RFC 1350, and that I just had to follow this RFC. Fortunately, I found
an already complete implementation of TFTP on the exercises website of the Information
Technology group of the Rochester Institute of Technology15. I modified the different
classes for my needs, mostly getting rid of the graphical user interface part. This TFTP
implementation consists of four classes we will now see one by one.

TFTPPacket
This class contains all that has to do with a TFTP packet, like the different opcode
and error values, the different fields of a packet, the functions to get and set the
values of these fields, and of course a method to parse and one to build a packet.
All the values and the format of a packet are all directly taken form TFTP’s RFC.

Download
The download class defines all the different fields and methods needed for the down-
load process from the TFTP server to a client. It also uses a timer to resend lost
packets.

15This little TFTP implementation seems to have no license restriction.

http://www.ietf.org/rfc/rfc1350.txt
http://www.it.rit.edu/~netsyslb/vksf522/
http://www.it.rit.edu/
http://www.it.rit.edu/
http://www.rit.edu/


CHAPTER 4. CISCO TRANSLATION SERVICE 46

Upload
If there is a download class, there is of course also an upload one. This class contains
all the fields and methods to upload a file to the TFTP server from a client.

TFTPServer
Finally, we have the class that implements the TFTP server. This class contains
everything that is needed to do a nice server, to start and stop the service.

4.3.3.2 CiscoTransmit

The CiscoTransmit class contains all the methods to send and receive a configuration
file to/from a Cisco device using SNMP to start the file transfer with TFTP. Since we
exactly know the different OIDs we will use with their corresponding values in the SNMP
command, we can process everything that has to do with SNMP in this class. As I
already mentioned it, I used SNMP4J[15] to write the code where SNMP was needed.
SNMP4J is quite simple to use and has a lot of features that I did not need to use.
I implemented the send and receive methods for SNMPv1 and v2c, but let SNMPv3
support for a future update. At the beginning, I decided to add this when everything will
work fine with SNMPv1 and v2c, but because of a lack of time, I had to abandon the
idea. Nevertheless, I have already created the different variables and the constructor for
having SNMPv3 support; the only two methods that still have to be implemented are the
sending and receiving of a configuration file. SNMP4J uses also a different type of PDU16

for SNMPv3 as for the two other versions, reason why we have to write the methods for it
in a different way. We also first need to configure the Cisco device for SNMPv3 support,
as we have to add some parameters before this can work.

4.3.3.3 CiscoUtil

CiscoUtil is a very little class that contains only one method for the moment. This class
should in the future be put in the verinec.util package, as it is intended to contain a
collection of various methods for Cisco configuration file. For example, at present the
only method is used when access lists are to be distributed to the device; the method
parses the configuration searching the access-list commands and each time a new access
list number is found, a no access-list ACL number command is added at the beginning
of the configuration file17. I am sure you remember the problems I alluded to in Section
4.3.2.2; one of these problems was the way we have to take to delete or modify an access
list rule. If you remember, we first have to delete all the access lists and then write them
again without the rule we want to delete or with the rule we have modified. The method
we mentioned above is here to be sure that all the access lists will be deleted. This method
is used by the DistCisco class for access lists distribution just before the configuration file
is send to the Cisco device.

16You will find the meaning of PDU in Appendix B.
17This could be done with XSLT, but I already thought at the situation when there will be a Cisco

Importer module which will give us the possibility to compare the rules, and in this case we will need a
Java class.



CHAPTER 4. CISCO TRANSLATION SERVICE 47

4.3.3.4 DistCisco

DistCisco is my distributor and is the class that implements the IDistributor interface that
every distributor has to implement. Every distributor has three methods to implement :

• setTarget

• distribute

• execute

The first method, setTarget, initializes a distributor with a given target, which is the
method argument; in our case the child of this target is a <cisco> element. Once we have
this element, we can extract all the different information we need for the distribution,
like the IP addresses of the host and the server, the name of the configuration file, which
SNMP version is used, etc. .
The distribute method, which takes a config element as argument, performs the actual
distribution work. The first thing I have to check, is that the right sort of configuration
data is used, namely the <result-file> element, which is the config element name. After
that, I create two files in the TFTP server folder : one that will contain the configur-
ation content to distribute to the device and one temporary file that already contains
the configuration commands which is the content of the config element. Before writing
the configuration command to the right file, I have to check if I have to send access lists
configuration part to the device; if this is the case, I have first to use the method we have
seen in the CiscoUtil class, which will parse the content of the temporary file and write
its output in the configuration file that will be sent. Finally, we have to write the config-
uration commands in the right file, send this file to the Cisco device using the methods
from the CiscoTransmit class, and delete the temporary file. Now you can understand,
why I have chosen result-file as sort of configuration data and not another one.
Finally, the execute method just returns Null as I do not have to execute a special com-
mand for the target.

In this part, I had some problems18 with the LocalSaxBuilder class from the verinec.util
package. Even if it was told to make the Schema validations using the local ones, it still
wanted to make a connection to the Internet. As I could not be connected to the Internet
while the router was connected to my computer, I could never load my XML configuration
tests in VeriNeC Studio19, as I always received an error because it could not validate the
schemas. In order to make my testings possible, I had to comment out some lines to
disable schema validation in the LocalSaxBuilder constructor; in Listing 4.19, you can see
which are these commented lines :

Listing 4.19 : Modified constructor of LocalSaxBuilder

private LocalSAXBuilder() throws VerinecException {

super("org.apache.xerces.parsers.SAXParser");

//setFeature ("http://xml.org/sax/features/validation", true);

//setValidation(true);

String schemas = buildSchemaLocations();

18Meanwhile, the following problem description has been fixed.
19The graphical user interface of VeriNeC



CHAPTER 4. CISCO TRANSLATION SERVICE 48

setProperty("http://apache.org/xml/properties/

schema/external-schemaLocation", schemas);

setProperty("http://apache.org/xml/properties/

schema/external-noNamespaceSchemaLocation", schemas);

//setFeature ("http://apache.org/xml/features/

//validation/schema", true);

setFeature ("http://apache.org/xml/features/

validation/schema-full-checking",true);

}

In Listing 4.19, we can see that I put all the lines in comments that have to do with Schema
validation. This is not a good solution, since there is no schema validation anymore and
what could lead to wrong configurations, but it was the only solution for me to do my
testings.

4.4 Improvements and critics

With every chapter, we have unveiled new parts of my Master thesis, we have seen the
different problems I had to solve, but we could also read the difficulties that appeared,
sometimes from nowhere, and that still have to be solved in a future development. In this
section, I want to resume the different points of my project that has to be improved or
changed in a future release.

4.4.1 SNMPv3 support

As we have seen it in Section 4.3.3.2, my project has unfortunately no support for SN-
MPv3, because of a lack of time. Even if I almost implemented everything to have a
support for this version, we still have to write the send and receive methods in the Cis-
coTransmit class, and also configure the Cisco device with the different parameters that
are needed for SNMPv3. Even if the SNMP protocol is mostly used in a local or private
network, we still have the risk that someone from the inside of the network, typically in a
big enterprise network, is watching the traffic and could see the community name and the
different configuration parameters we are sending with SNMP. This is the reason why we
need SNMPv3, since this version supports authentication and privacy using cryptographic
functions. As security becomes today a critic factor for every enterprise, we cannot take
the risk to propose a service or an application that sends important information on the
network without any security features.

4.4.2 TFTP alternative

In section 4.3.3.1 we discussed why I have chosen TFTP as protocol for sending or receiving
a configuration file, despite the fact I could have some better choice. Unfortunately Cisco
cannot specify another port than standard UDP port 69 for TFTP. I say unfortunately,
because every port number that is smaller than 1024 needs administrator rights to be



CHAPTER 4. CISCO TRANSLATION SERVICE 49

used. We need to launch the server as root or administrator, what is not really ideal for
us. The biggest problem is that we cannot start the server with VeriNeC, what is actually
something we really want to avoid. This needs to be changed in a future development by
using another protocol to transfer the configuration files.
TFTP has also a weakness we just discussed in Section 4.4.1 : lack of security. With this
protocol, you have neither authentication nor privacy support. Even if we would have
SNMPv3 support, we could still capture the whole content of the configuration file once it
is sent with TFTP. What we need is a protocol that will not need some special privileges
to be used and has support for authentication and privacy. I would suggest to use SFTP
or better SCP, as the latter has meantime been added to VeriNeC. Changing the protocol
to transfer the configuration file to/from the Cisco device will be very simple, if the chosen
protocol has already been integrated in VeriNeC. We just have to change the value of the
concerned OID to tell the device to use SCP instead of TFTP, and add the OID where I
have to give the password that will be used by SCP or SFTP.

4.4.3 Cisco importer

When we spoke about access lists and the problem bound to it (Section 4.3.2.2), we
mentioned that an Importer module in VeriNeC that would import configurations from
Cisco would be very useful. This would be very interesting for comparing the actual
configuration from the abstract file with the imported configuration from the Cisco device.
We would so for example not need to delete first all the access lists rules and write them
all again in order to modify or delete one rule; we just had to compare the access lists
entries, find the differences, delete only the access list entry that was really modified, and
then distribute only this access list entry and not everything.
A Cisco importer module would also be very useful to import the actual configuration of
the device, when we add it for the first time in the abstract configuration. With this arises
a new question: what have we to do with all the parameters, commands and options that
fit nowhere into the abstract configuration document? This will certainly be one of the
most important problem the Cisco Importer module developer will have to solve. I think
that a Cisco Importer is a project worth doing.

4.4.4 Testing network for VeriNeC

You certainly remember Section 4.3.2.3 on Page 40 where we have discussed the routing
translator. At the end of this section, I said that I was not able to configure the Cisco
device with my routing parameters, because it could not find the next-hop IP address
since I am not connected to any network. It would be good to have the possibility to test
our different configurations on a testing network just for VeriNeC. We will certainly find
some bugs we can see only once we are testing our configurations on a network.



Chapter 5

Conclusion

My Master thesis was focused on the network management theme; we first discussed the
possibilities of the standard management protocol SNMP, but we had to admit that it is
not well implemented in network devices, and then we introduced VeriNeC and showed
how it was possible to implement a Cisco translation service in it. The fact that my initial
Master thesis, called SNMP Research, was not feasible has finally two consequences of im-
portance : the first one is that it shows us the way how network devices vendors (under)use
the Simple Network Management Protocol, and the second consequence is that we now
have a first integration of Cisco Systems devices into VeriNeC.

We first began in the second chapter to see what SNMP is, how it works, what are its
components. We have also shown how this standard management protocol is integrated
into vendors’ network devices; they implement it in their system in a way that suits them
best : the vendors only integrate the monitoring capability of SNMP, leaving the con-
figuration part aside. With this strategy, they can create a rather lucrative business by
giving or selling their own solutions to configure their devices and proposing courses and
certifications to master their products. Once a user is accustomed to a system, he will
not easily change to another network devices vendor. The fact that vendors do not give
the possibility to configure their devices with SNMP is firstly to avoid the customers to
be able to easily change to a competitor, as with SNMP we can disregard their complex
system and only concentrate on their MIBs1; secondly, and this is a direct implication of
the first argument, this is a way to guarantee the fidelity of new and regular customers.
The lack of the configuration ability in vendors’ SNMP implementation is the direct cause
why my initial Master thesis was not feasible.
Was indeed the word deception in my Master thesis title really too strong toward SNMP?
The word disappointment would have been a possible replacement, but I think that it
does not really traduce the way how the vendors use SNMP, even if most people feel
more disappointed than really deceived by this management protocol. When I say that
vendors do not use SNMP correctly, this is not completely right, since they implement
the monitoring ability in a correct way, but I actually want to raise the attention on the
fact that they underuse or even misuse SNMP. We can compare this situation to an hypo-
thetical bank that gives their customers the possibility to open an account, to put some
money on it, to check the balance, but does not give them the possibility to withdraw

1Remember that the Management Information Base uses a standard syntax to describe its managed
objects; so, even if the systems are different, the MIB syntax stays the same.

50



CHAPTER 5. CONCLUSION 51

some money from their account.
The future of SNMP depends mostly on the network devices vendors as it is especially
them which use it. If we put the business factor aside, we can ask why it is not more
supported. Does this protocol not reflect anymore today’s managers needs? Should we
try to develop a new management protocol? The fact that SNMPv3 has become standard
version since 2004 will perhaps give more impact to this protocol, as this standard ver-
sion supports authentication and privacy using cryptographic functions. If this protocol
continues to be used by the network devices vendors in the same way than today, we
should perhaps think to change the meaning of SNMP into ”Simple Network Monitoring
Protocol”.

In the third chapter we saw what VeriNeC is, how it works, what are its different modules
and what they do, and what is its core; we finally focused on the translation module, since
my Master project had to extend it with a Cisco translation service. In today’s growing
number of heterogeneous interconnected devices in a network, it is absolutely essential
that every device is well configured, otherwise this can open security holes or create some
other network problems. VeriNeC is designed to solve these problems by giving the pos-
sibility to simulate the behavior of a device with this or that configuration, what permits
to find configuration problems before we send the configuration to the device. VeriNeC
is designed in a way that permits to integrate any kind of network devices, supporting
different distribution methods. The secret and core of VeriNeC is the abstract definition
of a network where each device or node is expressed in XML; each node has its own con-
figuration parameters and uses different translators to convert the abstract configuration
into a configuration specific to the device. This abstract description document permits
VeriNeC to disregard the underlying system of the described device.
Verinec improves network security and avoids bad configurations thanks to the simulator
module. The translation and importer modules open VeriNeC the door to almost every
network device we can imagine. VeriNeC will provide the network administrator a trans-
parent tool to manage all the devices of his network; he will be able to configure a Cisco
router or a Hewlett-Packard printer without having to know how Cisco IOS works or how
he has to connect to the HP printer to configure it. VeriNeC is a precursor of a new kind
of network management tools.

The fourth chapter showed the different parts of my Master thesis, the problems I en-
countered to achieve the requirements and the different strategies I used to solve them.
In the first two sections, we could see the different technology elements I used and the
project requirements I had to achieve. The next section explained us the implementation
part of my Master thesis. We first saw how it was possible to distribute a Cisco IOS con-
figuration file in a suitable way for VeriNeC and interested us in the syntax and content
of such a configuration file. We then saw the translators for the different services I had to
support and the XML Schema extension I had to do to add my distribution method. The
last part of the implementation section presented the different Java classes I implemented
to distribute a configuration to a Cisco device. In the last section of this fourth chapter,
we enumerated the improvements that could be done in a future development.
With this chapter we can really have an excellent insight of how the translation process of
VeriNeC works and above all how we can extend VeriNeC with our own translation service
for this or that network device. In our case, we extended VeriNeC with a Cisco translation



CHAPTER 5. CONCLUSION 52

service, what is indeed really a good thing because if we think at the infrastructure that
is used in big enterprises networks, we almost always find some Cisco Systems devices. If
VeriNeC wants one day to be used in such big networks, it really has to support at least
Cisco routers, firewalls and switches. This observation leads us to a problem I had while
implementing the translators and this is actually a problem we will have with almost
every device : how can we integrate specific important commands or options of a device
into VeriNeC? Cisco IOS has for example so many commands and options which cannot
be translated into the abstract definition document. This can show a kind of chosen limit
of VeriNeC : on one side we can choose to give the developers the possibility to add their
XML Schema for their devices to take these special commands or options into account;
on the other hand we can decide what is really needed as configuration on every device to
guarantee security and that it provides the different services we can expect from a network
device. The first scenario allows us to include all these special options into the abstract
definition document, but with several drawbacks : the simulation of the configuration will
become almost impossible and using more options could raise the risk to open security
holes. The second scenario is the one that was chosen by VeriNeC and also seems to be
the better one, as we can simulate every configuration for every network device and we
can guarantee that the system does not become too heavy.

My Master thesis is the first work I could find that gives a critical opinion on the way
SNMP is implemented in network devices; it clearly shows that SNMP is misused by
vendors by not implementing the configuration capability, what permits them to create a
new business. It is also a new proof that shows once more the will of the vendors to not
follow standards, as they do not want to depend on standards organization, preferring
proprietary solutions to make more money with.
My project also implements the first integration of Cisco Systems devices into VeriNeC.
Since their devices are presently the most used in enterprises networks, this opens VeriNeC
the doors to a new horizon. If VeriNeC wants to have a great impact in the community,
it is essential that it supports Cisco Systems devices. I hope that my Master thesis
represents the beginning to an important integration of Cisco devices into VeriNeC and
that this integration will be continued with future projects.



Appendix A

Cisco Systems

In this chapter, we will speak a bit more about Cisco Systems and what are the first steps
to do when we receive a Cisco device and want to make it work with VeriNeC. We will
also have a quick look at Cisco IOS command modes structure, each mode permitting to
configure a number of parameters.

A.1 A brief history

In 1984, the married couple Leonard Bosack and Sandra Lerner, who worked in different
computer departments at Stanford University, founded cisco Systems (notice the small c).
Strong with their own experience to solve their trouble getting their individual systems
to communicate, they founded cisco Systems with a small commercial gateway server
product that changed networking forever. The first product on the market was called the
Advanced Gateway Server (AGS). While cisco was not the first company to sell routers, it
created the first commercially successful multi-protocol router that permitted previously
incompatible computers to communicate using different network protocols.

You now certainly wonder why I always wrote cisco with a small c. The name cisco,
which is not an acronym, is an abbreviation of San Francisco; the founders had the
idea of the name and logo when they saw the Golden Gate Bridge1 while driving to San
Francisco. Having the Golden Gate Bridge in mind, have a look at Cisco’s logo on Figure
A.1.

Figure A.1: Logo of Cisco

1The Golden Gate Bridge is a well-known bridge in San Francisco, certainly the most famous suspen-
sion bridge of the world.

53

http://www.cisco.com/


APPENDIX A. CISCO SYSTEMS 54

I am pretty sure that you clearly recognized the Golden Gate Bridge. In 1992, the
company name was changed to Cisco Systems, Inc. .

Cisco has now a big list of hardware and software network products, among them we
can find routers, switches, firewalls, Wireless Access Points, IP Phones, etc. . Presently,
Cisco is clearly one of the most important vendor of network devices and solutions2.

A.2 First steps

In this section, we will see what we have to do when we receive a brand new Cisco device
and want to make it work with VeriNeC. I will also explain the problems I encountered
during the initial configuration.
We will go step by step through the different parameters to configure, even if this method
seems perhaps a bit childlike, but it is for me the best way to be sure that everything will
work, and this is also intended to be used as reference when new Cisco devices have to
be added to VeriNeC.

1. The first step we have to do, is to configure the basic parameters of the device using,
if possible, the Cisco Router Web Setup Tool (CRWS); this setup tool provides a
graphical user interface for configuring easily and quickly Cisco SOHO series and
8oo series routers. You can configure parameters like NAT, DNS or port filtering,
but the only things we need, is to parameter the name and the password of the
device, and DHCP.
For this first step, I already encountered the first problem. CRWS is an applet that
we can load using a browser. The problem, is that presently this applet does not
work with the JRE of Sun, but only with the one of Windows what implies that
finally we can only use CRWS with Microsoft’s browser, i.e Internet Explorer. Cisco
is aware of the problem for a long time, but has not upgraded the tool yet.

2. The second step we have to do, is to upgrade the IOS of the device. To be able
to download the newest IOS for your device from Cisco’s website, be sure to have
the client number to be able to access the restricted area where you will find what
you are looking for. Once you have downloaded the image of the IOS, you need to
upload it to the device; be careful to have enough space left on the device to achieve
the upload operation. There are different methods to install a new IOS image on
a device, even one using SNMP and TFTP; the best thing you can do is to have a
look at Cisco’s website and choose the one that suits you best.

3. Next we have to connect to the router using the telnet command with the IP address
of the router (per default 10.10.10.1, but have a look at the users guide of the device
to be sure). Once we are connected, we need to enter privileged EXEC mode (more
about this in next section) to password protect this mode, which has per default
no password. You just need to type the command enable secret Your password.
Next time you will access to the privileged EXEC mode, you will need to enter the
password you have chosen. You can easily recognize that you are in the privileged
EXEC mode, because each prompt line on CLI ends with the character #.

2This is my point of view and has nothing to do with publicity for Cisco Systems !



APPENDIX A. CISCO SYSTEMS 55

4. As we are already in privileged EXEC mode since last step, we can now continue
and enable the SNMP server. If the server is not running on the device, we cannot
send any SNMP request to it and we cannot distribute any configuration. First, we
have to enter the configuration mode, then we have to enable the read-only (RO)
and read-write (RW) community strings, exit out of the configuration mode and
finally write the modified configuration to nonvolatile RAM (NVRAM) to save the
settings. We can see all the different commands to enable the SNMP server in List-
ing A.1.

Listing A.1 : Enabling the SNMP server

Router#configure terminal

Enter configuration commands, one per line. End

with CNTL/Z.

Router(config)#snmp-server community public RO

Router(config)#snmp-server community private RW

Router(config)#exit

Router#write memory

Building configuration...

[OK]

Router#

Once all these steps have been performed, we can be sure that the Cisco device will work
with VeriNeC. If it does not work properly, make sure you have done all the steps in
the right order. After that, if there is still a problem, try to find which of the steps is
problematic and look at Cisco’s website to find some documentation about your problem
or explain your problem on Cisco’s forums.

A.3 Command modes structure

In this section, we will see the different Cisco IOS command modes structure. Each
command mode supports specific commands; for example, we saw in Section A.2 that the
enable secret command has to be used in privileged EXEC mode, while we needed to be
in global configuration mode to enable and configure the SNMP server. The command
modes are hierarchical, what means that we have to go through different modes before
we can access the one we want. We have the following hierarchy, from bottom to top :

• User EXEC

• Privileged EXEC

• Global configuration

When we begin a session, we are in user EXEC mode. From the global configuration
mode, as we will see on Figure A.2, we can reach three other modes, each one permitting
to configure a certain element of the device. Figures A.2 and A.3 will show us how we
can reach each mode, what are their prompt, how we can exit or enter a new mode, and
what we can do when we are in this or that mode.



APPENDIX A. CISCO SYSTEMS 56

Figure A.2: Command modes summary[4]



APPENDIX A. CISCO SYSTEMS 57

Figure A.3: Command modes summary (continued)[4]



Appendix B

Acronyms

AES Advanced Encryption Standard is in cryptography a block cipher adopted as an
encryption standard by the US government.

ASN.1 Abstract Syntax Notation one is a standard notation that describes data struc-
tures for representing, encoding/decoding and transmitting data.

BER Basic Encoding Rules are ASN.1 encoding rules.

CLI The Command Line Interface is a way to interact with a computer by giving it
textual commands.

DES Data Encryption Standard is in cryptography an encryption algorithm which was
the predecessor encryption standard of AES since 1976.

IANA The Internet Assigned Numbers Authority is an organisation that supervises IP
addresses, domain names and Internet protocol numbers assignment.

IETF The Internet Engineering Task Force is an organization that is responsible to
develop and promote Internet standards.

IOS Internetwork Operating System is the operating system used on most Cisco Systems
devices.

MIB Management Information Base : see Section 2.4 on Page 12.

NAT Network Address Translation is a technique in which the source and/or destination
addresses of IP packets are changed to reflect the IP address of the inside or outside
network as they pass through a router or firewall.

OID Object Identifier : see Section 2.3 on Page 10.

PDU A Protocol Data Unit is a unit of data that is specified in a protocol and that
consists of protocol-control information and user data.

RFC A Request for Comments is an informational document about Internet standards
and protocols.

SNMP Simple Network Management Protocol : see Chapter 2.

58



APPENDIX B. ACRONYMS 59

TCP The Transport Control Protocol is one of the core protocol of the transport layer.
This protocol permits, among other things, different programs on computers con-
nected to a network to create a reliable connection.

TFTP Trivial File Transfer Protocol : Does the same as FTP, but has no authentication
and no possibility to browse folders on a target server.

UDP The User Datagram Protocol is, like TCP, a protocol of the transport layer, but
does not create a reliable connection.

VeriNeC Verified Network Configuration [13] : see Chapter 3.

XML eXtensible Markup Language [21] : see Section 4.2 on Page 28.

XSLT eXtensible Stylesheet Language Transformations [23] is a language for transform-
ing XML documents into other documents like text, html, PDF or XML.



Bibliography

[1] Douglas Mauro and Kevin Schmidt. Essential SNMP, First Edition. O’Reilly, July
2001.

[2] Todd Lammle. CCNA: Cisco Certified Network Associate (Study Guide), Fourth
Edition. Sybex, 2004.

[3] Todd Lammle, Sean Odom and Kevin Wallace. CCNP: Routing (Study Guide).
Sybex, 2001.

[4] Cisco System, Inc. . Cisco 826, 827, 828, 831, 836, and 837 and Cisco SOHO 76,
77, 78, 91, 96, and 97 Routers Software Configuration Guide . 2003.

[5] Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche. The role of simulation
in a network configuration engineering approach.

[6] David Buchmann. Verinec Translation Module. Working Paper.

[7] David Flanagan. Java in a nutshell, Fourth Edition. O’Reilly, March 2002.

[8] Andrew S. Tanenbaum. Computer Networks, Fourth Edition. Prentice Hall, 2003.

[9] Elliotte Rusty Harold and W. Scott Means. XML in a nutshell, Second Edition.
O’Reilly, June 2002.

[10] Brett McLaughlin. Java & XML, Second Edition. O’Reilly, August 2001.

[11] Doug Tidwell. XSLT, First Edition. O’Reilly, August 2001.

[12] Eric van der Vlist. XML Schema, First Edition. O’Reilly, June 2002.

[13] Verified Network Configuration project,
http://diuf.unifr.ch/tns/projects/verinec

[14] Netopeer,
http://www.liberouter.org/netopeer

[15] SNMP implementation for Java,
http://www.snmp4j.org

[16] Net-SNMP,
http://www.net-snmp.org

60

http://diuf.unifr.ch/tns/projects/verinec
http://www.liberouter.org/netopeer
http://www.snmp4j.org
http://www.net-snmp.org


BIBLIOGRAPHY 61

[17] SNMPLink,
http://www.snmplink.org

[18] mibDepot,
http://www.mibdepot.com

[19] Cisco Systems,
http://www.cisco.com

[20] Wikipedia.org,
http://wikipedia.org

[21] Definition of XML,
http://www.w3.org/XML

[22] Definition of XML Schema,
http://www.w3.org/XML/Schema

[23] Definition of XSLT,
http://www.w3.org/TR/xslt

[24] Eclipse, IDE platform for Java,
http://www.eclipse.org

[25] NetworkComputing.com,
http://www.networkcomputing.com

[26] Java Developers Almanac,
http://javaalmanac.com

[27] Java homepage,
http://java.sun.com

http://www.snmplink.org
http://www.mibdepot.com
http://www.cisco.com
http://wikipedia.org
http://www.w3.org/XML
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xslt
http://www.eclipse.org
http://www.networkcomputing.com
http://javaalmanac.com
http://java.sun.com

	Contents
	List of Figures
	Introduction
	SNMP
	What is SNMP ?
	SNMP components
	The Structure of Management Information
	Management Information Base
	SNMP Operations
	SNMP and the vendors
	SNMP and the future

	The VeriNeC Project
	Architecture
	Network Definition
	Network Definition Schema

	Translation part
	Translation Process


	Cisco translation service
	Project requirements
	Technology
	Implementation
	Cisco part
	Distribution method
	Configuration file

	Translators and schema extensions 
	Ethernet translator
	Packet-filters translator
	Routing translator
	Translation XML Schema extension

	Java
	TFTP Server
	CiscoTransmit
	CiscoUtil
	DistCisco


	Improvements and critics
	SNMPv3 support
	TFTP alternative
	Cisco importer
	Testing network for VeriNeC


	Conclusion
	Cisco Systems
	A brief history
	First steps
	Command modes structure

	Acronyms
	Bibliography

